forked from Jittor/JittorLLMs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_demo.py
47 lines (41 loc) · 1.91 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import models
import gradio as gr
MAX_TURNS = 20
MAX_BOXES = MAX_TURNS * 2
def predict(input, history=None):
global model, args
if history is None:
history = []
for response, history in model.run_web_demo(input, history):
updates = []
for query, response in history:
updates.append(gr.update(visible=True, value="用户:" + query))
updates.append(gr.update(visible=True, value=f"{args.model}:" + response))
if len(updates) < MAX_BOXES:
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
yield [history] + updates
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model", choices=models.availabel_models)
args = parser.parse_args()
model = models.get_model(args)
with gr.Blocks() as demo:
state = gr.State([])
text_boxes = []
for i in range(MAX_BOXES):
if i % 2 == 0:
text_boxes.append(gr.Markdown(visible=False, label="提问:"))
else:
text_boxes.append(gr.Markdown(visible=False, label="回复:"))
with gr.Row():
with gr.Column(scale=4):
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=11).style(
container=False)
with gr.Column(scale=1):
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
button = gr.Button("Generate")
button.click(predict, [txt, state], [state] + text_boxes)
demo.queue().launch(share=False, inbrowser=False, server_port=51234, server_name="0.0.0.0")