Skip to content

Latest commit

 

History

History
86 lines (50 loc) · 3.22 KB

README.md

File metadata and controls

86 lines (50 loc) · 3.22 KB

Deepstack for Bucket

This repository contains the code for running the experiments for the following paper:

Ganzfried S , Sandholm T . Potential-aware imperfect-recall abstraction with earth mover's distance in imperfect-information games[C]// Twenty-eighth Aaai Conference on Artificial Intelligence. AAAI Press, 2014.

This code is designed to:

  • Implement an abstract method to significantly improve performance on no-limit Texas Hold'em.
  • Apply and test the effect of this abstract method on the Deepstack algorithm.

Dependencies

  • Python 3
  • Pyemd
  • Numpy
  • Scipy
  • Scikit-learn
  • Matplotlib

How to Run

  • generate data

    python Generate_data.py [OPTIONS]

    • Options
    Name, shorthand Default Range Description
    --street river river | turn | flop the round name
    --file_path data/ - the relative path for storing data
  • Clustering data

    ·python Cluster_data.py [OPTIONS]

    • Options
    Name, shorthand Default Range Description
    --street river river | turn | flop the round name
    --file_path data/ - the relative path for storing data
    --k 5 Positive integer the number of clusters
    --initialMethod kmean++ kmeans++ | random initialize cluster center point method
    --ifsave True True | False whether to save the cluster center point
  • Save the correspondence between the hand and the bucket

    python Cluster_result.py

  • Visual clustering results

    python Data_Visualization.py [OPTIONS]

    • Options
    Name, shorthand Default Range Description
    --street river river | turn | flop the round name
    --mode test data | results | test plot data mode
    --ifsave True True | False whether to save the cluster center point
    • Details

      data mode : Plot raw data distribution

      results mode : Plot bucket data distribution

      test mode :Plot both raw and bucket data distribution

  • Check the minimum cluster center point EMD distance

    python Check_MinEMD.py

Algorithm

This is the first algorithm for computing potential-aware imperfect-recall abstractions, using EMD as the distance metric. Experiments on no-limit Texas Hold’em show that our algorithm leads to a statistically significant improvement in performance over the previously best abstraction algorithm.

If you want to know more details, please read this paper