-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate_TLN.py
67 lines (54 loc) · 2.46 KB
/
evaluate_TLN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
import io
import yaml
import torch
from torch.utils.data import DataLoader
from lib.datasets import ShapeNetMultiviewDataset
from lib.transformations import ComposeImageTransformation
from lib.transformations import ComposeGridTransformation
from lib.networks.model import CVAE
from lib.networks.losses import TLNLoss
from lib.networks.utils import evaluate
def define_options_parser():
parser = argparse.ArgumentParser(description='Model evaluating script. Provide a suitable config.')
parser.add_argument('config', help='Path to config file in YAML format.')
parser.add_argument('modelname', help='Postfix to model name.')
parser.add_argument('part', help='Part of dataset (train / val / test).')
parser.add_argument('predict', help='Prediction mode flag.')
parser.add_argument('save', help='Saving flag.')
return parser
parser = define_options_parser()
args = parser.parse_args()
with io.open(args.config, 'r') as stream:
config = yaml.load(stream)
config['model_name'] = '{0}.pkl'.format(args.modelname)
config['resume'] = True
config['batch_size'] = 24 // config['img_n_views']
if args.predict == 'True':
config['prediction_mode'] = True
else:
config['prediction_mode'] = False
if args.save == 'True':
config['saving_mode'] = True
else:
config['saving_mode'] = False
print('Configurations loaded.')
image_transform = ComposeImageTransformation(**config)
grid_transform = ComposeGridTransformation(**config)
eval_dataset = ShapeNetMultiviewDataset(config['path2data'], part=args.part,
n_views_used=config['img_n_views'], views_shuffle=False,
grid_size=config['grid_size'], sample_grids=True,
image_transform=image_transform, grid_transform=grid_transform)
print('Dataset init: done.')
eval_iterator = DataLoader(eval_dataset, batch_size=config['batch_size'], shuffle=False,
num_workers=config['num_workers'], pin_memory=True, drop_last=False)
print('Iterator init: done.')
model = CVAE(**config).cuda()
print('Model init: done.')
criterion = TLNLoss(**config).cuda()
print('Losses initialization: done.')
checkpoint = torch.load(config['path2data'] + 'models/' + config['model_name'])
model.load_state_dict(checkpoint['model_state'])
del(checkpoint)
print('Model {} loaded.'.format(config['path2data'] + 'models/' + config['model_name']))
evaluate(eval_iterator, model, criterion, **config)