-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathSpring.lua
134 lines (107 loc) · 3.21 KB
/
Spring.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
local VELOCITY_THRESHOLD = 0.001
local POSITION_THRESHOLD = 0.001
local EPS = 0.0001
--[=[
@interface SpringOptions
@within Spring
@field frequency number | nil -- Oscillation rate (in hz) when dampingRatio is 1. Default: 4
@field dampingRatio number | nil -- How rapidly the oscillations decay from one bounce to the next. Default: 1
]=]
--[=[
@class Spring
Represents a spring-type Goal. Based on [Fraktality's spring solver](https://github.com/Fraktality/Spring).
]=]
local Spring = {}
Spring.__index = Spring
--[=[
Creates a new Spring.
@param targetValue number
@param options SpringOptions
@return Spring
]=]
function Spring.new(targetValue, options)
assert(targetValue, "Missing argument #1: targetValue")
options = options or {}
return setmetatable({
_targetValue = targetValue,
_frequency = options.frequency or 4,
_dampingRatio = options.dampingRatio or 1,
}, Spring)
end
--[=[
Advances the specified MotorState by `deltaTime` using the spring solver and returns a new MotorState.
@param state MotorState
@param deltaTime number
@return MotorState
]=]
function Spring:step(state, dt)
-- Copyright 2018 Parker Stebbins (parker@fractality.io)
-- github.com/Fraktality/Spring
-- Distributed under the MIT license
local d = self._dampingRatio
local f = self._frequency*2*math.pi
local g = self._targetValue
local p0 = state.value
local v0 = state.velocity or 0
local offset = p0 - g
local decay = math.exp(-d*f*dt)
local p1, v1
if d == 1 then -- Critically damped
p1 = (offset*(1 + f*dt) + v0*dt)*decay + g
v1 = (v0*(1 - f*dt) - offset*(f*f*dt))*decay
elseif d < 1 then -- Underdamped
local c = math.sqrt(1 - d*d)
local i = math.cos(f*c*dt)
local j = math.sin(f*c*dt)
-- Damping ratios approaching 1 can cause division by small numbers.
-- To fix that, group terms around z=j/c and find an approximation for z.
-- Start with the definition of z:
-- z = sin(dt*f*c)/c
-- Substitute a=dt*f:
-- z = sin(a*c)/c
-- Take the Maclaurin expansion of z with respect to c:
-- z = a - (a^3*c^2)/6 + (a^5*c^4)/120 + O(c^6)
-- z ≈ a - (a^3*c^2)/6 + (a^5*c^4)/120
-- Rewrite in Horner form:
-- z ≈ a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
local z
if c > EPS then
z = j/c
else
local a = dt*f
z = a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
end
-- Frequencies approaching 0 present a similar problem.
-- We want an approximation for y as f approaches 0, where:
-- y = sin(dt*f*c)/(f*c)
-- Substitute b=dt*c:
-- y = sin(b*c)/b
-- Now reapply the process from z.
local y
if f*c > EPS then
y = j/(f*c)
else
local b = f*c
y = dt + ((dt*dt)*(b*b)*(b*b)/20 - b*b)*(dt*dt*dt)/6
end
p1 = (offset*(i + d*z) + v0*y)*decay + g
v1 = (v0*(i - z*d) - offset*(z*f))*decay
else -- Overdamped
local c = math.sqrt(d*d - 1)
local r1 = -f*(d - c)
local r2 = -f*(d + c)
local co2 = (v0 - offset*r1)/(2*f*c)
local co1 = offset - co2
local e1 = co1*math.exp(r1*dt)
local e2 = co2*math.exp(r2*dt)
p1 = e1 + e2 + g
v1 = e1*r1 + e2*r2
end
local complete = math.abs(v1) < VELOCITY_THRESHOLD and math.abs(p1 - g) < POSITION_THRESHOLD
return {
complete = complete,
value = complete and g or p1,
velocity = v1,
}
end
return Spring