-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsales_report_xlsxwriter.py
102 lines (82 loc) · 3.65 KB
/
sales_report_xlsxwriter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from pathlib import Path
import pandas as pd
# Directory of this file
this_dir = Path(__file__).resolve().parent
# Read in all files
parts = []
for path in (this_dir / "sales_data").rglob("*.xls*"):
print(f'Reading {path.name}')
part = pd.read_excel(path)
parts.append(part)
# Combine the DataFrames from each file into a single DataFrame
df = pd.concat(parts)
# Pivot each store into a column and sum up all transactions per date
pivot = pd.pivot_table(df,
index="transaction_date", columns="store",
values="amount", aggfunc="sum")
# Resample to end of month and assign an index name
summary = pivot.resample("M").sum()
summary.index.name = "Month"
# Sort columns by total revenue
summary = summary.loc[:, summary.sum().sort_values().index]
# Add row and column totals: Using "append" together with "rename"
# is a convenient way to add a row to the bottom of a DataFrame
summary.loc[:, "Total"] = summary.sum(axis=1)
summary = summary.append(summary.sum(axis=0).rename("Total"))
#### Write summary report to Excel file ####
# DataFrame position and number of rows/columns
# xlsxwriter uses 0-based indices
startrow, startcol = 2, 1
nrows, ncols = summary.shape
with pd.ExcelWriter(this_dir / "sales_report_xlsxwriter.xlsx",
engine="xlsxwriter", datetime_format="mmm yy") as writer:
summary.to_excel(writer, sheet_name="Sheet1",
startrow=startrow, startcol=startcol)
# Get xlsxwriter book and sheet object
book = writer.book
sheet = writer.sheets["Sheet1"]
# Set title
title_format = book.add_format({"bold": True, "size": 24})
sheet.write(0, startcol, "Sales Report", title_format)
# Sheet formatting
# 2 = hide on screen and when printing
sheet.hide_gridlines(2)
# Format the DataFrame with
# - number format
# - column width
# - conditional formatting
number_format = book.add_format({"num_format": "#,##0",
"align": "center"})
below_target_format = book.add_format({"font_color": "#E93423"})
sheet.set_column(first_col=startcol, last_col=startcol + ncols,
width=14, cell_format=number_format)
sheet.conditional_format(first_row=startrow + 1,
first_col=startcol + 1,
last_row=startrow + nrows,
last_col=startcol + ncols,
options={"type": "cell", "criteria": "<=",
"value": 20000,
"format": below_target_format})
# Chart
chart = book.add_chart({"type": "column"})
chart.set_title({"name": "Sales per Month and Store"})
chart.set_size({"width": 830, "height": 450})
# Add each column as a series, ignoring total row and col
for col in range(1, ncols):
chart.add_series({
# [sheetname, first_row, first_col, last_row, last_col]
"name": ["Sheet1", startrow, startcol + col],
"categories": ["Sheet1", startrow + 1, startcol,
startrow + nrows - 1, startcol],
"values": ["Sheet1", startrow + 1, startcol + col,
startrow + nrows - 1, startcol + col],
})
# Chart formatting
chart.set_x_axis({"name": summary.index.name,
"major_tick_mark": "none"})
chart.set_y_axis({"name": "Sales",
"line": {"none": True},
"major_gridlines": {"visible": True},
"major_tick_mark": "none"})
# Add the chart to the sheet
sheet.insert_chart(startrow + nrows + 2, startcol, chart)