-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_play.py
86 lines (80 loc) · 3.19 KB
/
model_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from absl import app
from absl import flags
import gym
import gym_iOTA
import pybullet as p
from modbot_planner.planning import planning
from modbot_planner.clustering import cluster
from modbot_planner.coordination import Coordination, ParamPoly2D
FLAGS = flags.FLAGS
flag.DEFINE_string('checkpoint', None, 'Location of saved weights')
def main():
if FLAGS.checkpoint is None:
raise Exception('Input checkpoint location')
env = gym.make('iOTA-v0')
obs = env.reset()
done = False
poly = ParamPoly2D(2,10)
swarm = Coordination(env.k, env.n, pi_loc=FLAGS.checkpoint)
sum_reward = 0.0
gamma = 0.99
timestep = 0
while not done:
state_info = gym_iOTA.utils.obs_for_modbot_planner(obs)
parents, groups, dictionaries = cluster(obs,
[iota.base_id for iota in env.iotas],
env.no_of_clusters,
debug=True,
pClient=env.pClient
)
state_info = gym_iOTA.utils.split_cluster(state_info, dictionaries)
action_dict = {}
act_dict = swarm.forward(state_info, poly)
action_dict.update(act_dict)
target_point = gym_iOTA.utils.to_target(action_dict)
robot_position = [ list(p.getBasePositionAndOrientation(iota.id, env.pClient)[0]) for iota in env.iotas ]
obstacles = robot_position + env.fetch_obstacles()
paths = planning(obs, target_point, (0,0,0), obstacles, 5)
smooth_path = []
progress = []
ds = 0.05
for path in paths:
print(path)
sp = Spline2D(*path)
s = np.arange(0, sp.s[-1], ds)
rx, ry = [], []
for i_s in s:
ix, iy = sp.calc_position(i_s)
rx.append(ix)
ry.append(iy)
smooth_path.append(list(zip(rx,ry)))
progress.append(0)
i=0
while i<100:
print(i)
action = np.ones((env.no_of_modules, 3))
for j in range(env.no_of_modules):
if progress[j]!=-1:
if progress[j]==(len(smooth_path[j])-1):
progress[j] = -1
else:
progress[j] +=1
action[j,:] = [*smooth_path[j][progress[j]], 0.01]
dock = np.zeros(
(env.no_of_modules,
env.no_of_modules))
obs, reward, done, info = env.step(action, dock)
## Try pooling the control
if i%20==0:
for j in range(env.no_of_modules):
setpoints[j,:] = [*poly.sample_near(obs[j,:2]),0.01]
cluster(obs, [iota.base_id for iota in env.iotas], env.no_of_clusters, debug=True, pClient=env.pClient )
# time.sleep(0.1)
i+=1
obs, rew, done, _ = env.step(action)
sum_reward += (gamma**timestep)*rew
timestep += 1
env.reset()
print("Total Returns is", sum_reward, "in", timestep, "timesteps")
if __name__ == "__main__":
app.run(main)