-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
59 lines (46 loc) · 1.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import streamlit as st
import pickle
import pandas as pd
import requests
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?api_key=f1637e77b7ca1ee7c4ce0db6268be28e&language=en-US".format(movie_id)
data = requests.get(url)
data = data.json()
poster_path = data['poster_path']
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
return full_path
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movie_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies=[]
recommended_movie_posters=[]
for i in movie_list:
# fetch the movie poster
movie_id = movies.iloc[i[0]].movie_id
recommended_movie_posters.append(fetch_poster(movie_id))
recommended_movies.append(movies.iloc[i[0]].title)
return recommended_movies,recommended_movie_posters
movies_dict=pickle.load(open('movie_dict.pkl','rb'))
movies=pd.DataFrame(movies_dict)
similarity=pickle.load(open('similarity.pkl','rb'))
st.title("Movie Recommendation System")
selected_movie_name=st.selectbox('Select The Movie', movies.title.values)
if st.button('Recommend'):
recommended_movies,recommended_movie_posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(recommended_movies[0])
st.image(recommended_movie_posters[0])
with col2:
st.text(recommended_movies[1])
st.image(recommended_movie_posters[1])
with col3:
st.text(recommended_movies[2])
st.image(recommended_movie_posters[2])
with col4:
st.text(recommended_movies[3])
st.image(recommended_movie_posters[3])
with col5:
st.text(recommended_movies[4])
st.image(recommended_movie_posters[4])