-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_style.py
229 lines (171 loc) · 9.14 KB
/
transfer_style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from PIL import Image
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.models as models
import copy
class Style_Transfer(object):
def __init__(self, path_style_image, path_content_image, num_steps_from_user):
self.imsize = 512
self.loader = transforms.Compose([
transforms.Resize(self.imsize), # нормируем размер изображения
transforms.CenterCrop(self.imsize),
transforms.ToTensor()]) # превращаем в удобный формат
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.style_img = self.image_loader(path_style_image) # as well as here
self.content_img = self.image_loader(path_content_image) # измените путь на тот который у вас.
self.cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(self.device)
self.cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(self.device)
self.content_layers_default = ['conv_4']
self.style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
self.cnn = models.vgg19(pretrained=True).features.to(self.device).eval()
self.num_steps_from_user = num_steps_from_user
def image_loader(self, image_name):
image = Image.open(image_name)
image = self.loader(image).unsqueeze(0)
return image.to(self.device, torch.float)
class ContentLoss(nn.Module):
def __init__(self, target, ):
super(Style_Transfer.ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach() # это константа. Убираем ее из дерева вычеслений
self.loss = F.mse_loss(self.target, self.target) # to initialize with something
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(self, input):
batch_size, h, w, f_map_num = input.size() # batch size(=1)
# b=number of feature maps
# (h,w)=dimensions of a feature map (N=h*w)
features = input.view(batch_size * h, w * f_map_num) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(batch_size * h * w * f_map_num)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(Style_Transfer.StyleLoss, self).__init__()
self.target = Style_Transfer.gram_matrix(self, target_feature).detach()
self.loss = F.mse_loss(self.target, self.target) # to initialize with something
def forward(self, input):
G = Style_Transfer.gram_matrix(self, input)
self.loss = F.mse_loss(G, self.target)
return input
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Style_Transfer.Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize img
return (img - self.mean) / self.std
def get_style_model_and_losses(self, normalization_mean, normalization_std):
content_layers = self.content_layers_default
style_layers = self.style_layers_default
self.cnn = copy.deepcopy(models.vgg19(pretrained=True).features.to(self.device).eval())
# normalization module
normalization = Style_Transfer.Normalization(normalization_mean, normalization_std).to(self.device)
# just in order to have an iterable access to or list of content/syle
# losses
content_losses = []
style_losses = []
# assuming that cnn is a nn.Sequential, so we make a new nn.Sequential
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in self.cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ContentLoss
# and StyleLoss we insert below. So we replace with out-of-place
# ones here.
# Переопределим relu уровень
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(self.content_img).detach()
content_loss = Style_Transfer.ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(self.style_img).detach()
style_loss = Style_Transfer.StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
# выбрасываем все уровни после последенего styel loss или content loss
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], Style_Transfer.ContentLoss) or isinstance(model[i], Style_Transfer.StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
def get_input_optimizer(self, input_img):
# this line to show that input is a parameter that requires a gradient
# добоваляет содержимое тензора катринки в список изменяемых оптимизатором параметров
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run_style_transfer(self, num_steps,
style_weight=100000, content_weight=1):
"""Run the style transfer."""
print('Building the style transfer model..')
num_steps = 10 * num_steps
model, style_losses, content_losses = self.get_style_model_and_losses(self.cnn_normalization_mean,
self.cnn_normalization_std)
optimizer = self.get_input_optimizer(self.content_img)
print('Optimizing..')
run = [0]
while run[0] <= num_steps:
def closure():
# correct the values
# это для того, чтобы значения тензора картинки не выходили за пределы [0;1]
self.content_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(self.content_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
# взвешивание ощибки
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
return style_score + content_score
optimizer.step(closure)
# a last correction...
self.content_img.data.clamp_(0, 1)
return self.content_img
def sdf(self):
self.result = self.run_style_transfer(self.num_steps_from_user)
unloader = transforms.ToPILImage()
image = self.result.cpu().clone()
image = image.squeeze(0) # функция для отрисовки изображения
image = unloader(image)
return image