-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
55 lines (45 loc) · 1011 Bytes
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
class param(object):
pretrained_weight=np.load('data/wordvec4.npy')
finetune=False
vocab_size=pretrained_weight.shape[0]
doc_length=18
embed_dim=300
num_class=2
weight_decay=5e-4
init_weight=True
lr1=1e-3
lr2=0
epoch=100
class inception_hyparameter(param):
kernel_num=[256,128,128,64,32]
kmax=1
incept_dim=100
fc_hiddim=64
class DA_hyparameter(param):
hidden_size=200
num_layers=1
useBi=2
fc_hiddim=64
compare_dim=400
weight_decay=1e-4
class AR_hyparameter(param):
hidden_size=256
num_layers=1
useBi=2
da=400
fc_hiddim=64
class RNN_hyparameter(param):
hidden_size=256
num_layers=1
dropout=0.5
useBi=2
fc_hiddim=64
class CNN_hyparameter(param):
kernel_num=[256,128,128,64,32]
kernel_size=[1,2,3,4,5]
kmax=1
fc_hiddim=50
if __name__ == '__main__':
arg=CNN_hyparameter()
print (arg.kmax)