-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeepResNet.py
369 lines (307 loc) · 12.8 KB
/
deepResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
import torch.nn as nn
from typing import Any, Callable, Optional, Type, Union, List
from deepmoe_utils import MoELayer, ShallowEmbeddingNetwork, MultiHeadedSparseGatingNetwork
# DeepMoE model
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class MoEBasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
in_channels: int,
out_channels: int,
emb_dim: int,
wide: bool = False,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
if wide:
in_channels = in_channels * 2
out_channels = out_channels * 2
self.conv1 = MoELayer(in_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.bn1 = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = MoELayer(out_channels, out_channels, kernel_size=3, padding=1)
self.bn2 = norm_layer(out_channels)
self.downsample = downsample
self.stride = stride
self.gate1 = MultiHeadedSparseGatingNetwork(emb_dim, out_channels)
self.gate2 = MultiHeadedSparseGatingNetwork(emb_dim, out_channels)
def forward(self, x: torch.Tensor, embedding: torch.Tensor) -> torch.Tensor:
identity = x
gate_values_1 = self.gate1(embedding)
out = self.conv1(x, gate_values_1)
out = self.bn1(out)
out = self.relu(out)
gate_values_2 = self.gate2(embedding)
out = self.conv2(out, gate_values_2)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out, [gate_values_1, gate_values_2]
"""
These bottlenecks are slightly different from the paper's bottlenecks because it simply doesn't make
any sense to have 3 1x1 convolutions in a row. Thus, I followed the bottleneck structure of the original
ResNet paper and applied the MoE layers as according to the paper.
"""
class MoEBottleneckA(nn.Module):
expansion: int = 4
def __init__(
self,
in_channels: int,
out_channels: int,
emb_dim: int,
wide: bool = False,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
mid_channels = int(out_channels * (base_width / 64.)) * groups
if wide:
in_channels = in_channels * 2
mid_channels = mid_channels * 2
out_channels = out_channels * 2
self.conv1 = MoELayer(in_channels, mid_channels, kernel_size=1)
self.bn1 = norm_layer(mid_channels)
self.conv2 = MoELayer(mid_channels, mid_channels, kernel_size=3, stride=stride, padding=1, dilation=dilation)
self.bn2 = norm_layer(mid_channels)
self.conv3 = conv1x1(mid_channels, out_channels * self.expansion)
self.bn3 = norm_layer(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.gate1 = MultiHeadedSparseGatingNetwork(emb_dim, mid_channels)
self.gate2 = MultiHeadedSparseGatingNetwork(emb_dim, out_channels)
def forward(self, x: torch.Tensor, embeddings: torch.Tensor) -> torch.Tensor:
identity = x
gate_values_1 = self.gate1(embeddings)
out = self.conv1(x, gate_values_1)
out = self.bn1(out)
out = self.relu(out)
gate_values_2 = self.gate2(embeddings)
out = self.conv2(out, gate_values_2)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out, [gate_values_1, gate_values_2]
class MoEBottleneckB(nn.Module):
expansion: int = 4
def __init__(
self,
in_channels: int,
out_channels: int,
emb_dim: int,
wide: bool = False,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
mid_channels = int(out_channels * (base_width / 64.)) * groups
if wide:
in_channels = in_channels * 2
mid_channels = mid_channels * 2
out_channels = out_channels * 2
self.conv1 = conv1x1(in_channels, mid_channels)
self.bn1 = norm_layer(mid_channels)
self.conv2 = MoELayer(mid_channels, mid_channels, kernel_size=3, stride=stride, padding=1, dilation=dilation)
self.bn2 = norm_layer(mid_channels)
self.conv3 = conv1x1(mid_channels, out_channels * self.expansion)
self.bn3 = norm_layer(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.gate = MultiHeadedSparseGatingNetwork(emb_dim, out_channels)
def forward(self, x: torch.Tensor, embeddings: torch.Tensor) -> torch.Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
gate_values = self.gate(embeddings)
out = self.conv2(out, gate_values)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out, [gate_values]
class ResNetMoe(nn.Module):
def __init__(
self,
block: Type[Union[MoEBasicBlock, MoEBottleneckA, MoEBottleneckB]],
layers: List[int],
dim: int = 128,
num_classes: int = 1000,
zero_init_residual: bool = False,
wide: bool = False,
cifar: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.in_channels = 64
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element list, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.dim = dim
self.embedding = ShallowEmbeddingNetwork(dim, 3, cifar)
wide_multiplier = 2 if wide else 1
self.conv1 = nn.Conv2d(3, self.in_channels * wide_multiplier, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.in_channels * wide_multiplier)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], wide=wide)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0], wide=wide)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1], wide=wide)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], wide=wide)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
if wide:
self.fc = nn.Linear(512 * 2 * block.expansion, num_classes)
else:
self.fc = nn.Linear(512 * block.expansion, num_classes)
self.embedding_classifier = nn.Linear(dim, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, MoEBottleneckA) and m.bn3.weight is not None:
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, MoEBasicBlock) and m.bn2.weight is not None:
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(
self,
block: Type[Union[MoEBasicBlock, MoEBottleneckA, MoEBottleneckB]],
out_channels: int,
blocks: int,
stride: int = 1,
dilate: bool = False,
wide: bool = False,
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
wide_multiplier = 2 if wide else 1
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
conv1x1(self.in_channels * wide_multiplier, out_channels * block.expansion * wide_multiplier, stride),
norm_layer(out_channels * wide_multiplier * block.expansion),
)
layers = nn.ModuleList()
layers.append(
block(
self.in_channels, out_channels, self.dim, wide, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.in_channels,
out_channels,
self.dim,
wide,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
return layers
def forward(self, x: torch.Tensor, predict=False) -> torch.Tensor:
embedding = self.embedding(x)
emb_y_hat = self.embedding_classifier(embedding)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
gates = []
for layer in self.layer1:
x, gate = layer(x, embedding)
gates.extend(gate)
for layer in self.layer2:
x, gate = layer(x, embedding)
gates.extend(gate)
for layer in self.layer3:
x, gate = layer(x, embedding)
gates.extend(gate)
for layer in self.layer4:
x, gate = layer(x, embedding)
gates.extend(gate)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
if predict:
return x
return x, gates, emb_y_hat
def resnet18_moe(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBasicBlock, [2, 2, 2, 2], **kwargs)
def resnet34_moe(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBasicBlock, [3, 4, 6, 3], **kwargs)
def resnet50_moe_a(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBottleneckA, [3, 4, 6, 3], **kwargs)
def resnet50_moe_b(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBottleneckB, [3, 4, 6, 3], **kwargs)
def resnet101_moe_a(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBottleneckA, [3, 4, 23, 3], **kwargs)
def resnet101_moe_b(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBottleneckB, [3, 4, 23, 3], **kwargs)
def resnet152_moe_a(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBottleneckA, [3, 8, 36, 3], **kwargs)
def resnet152_moe_b(**kwargs: Any) -> ResNetMoe:
return ResNetMoe(MoEBottleneckB, [3, 8, 36, 3], **kwargs)