-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (63 loc) · 3.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from pyspark import SparkConf
from pyspark.sql import Window, SparkSession, DataFrame
import pyspark.sql.functions as spark_func
import time
def create_spark_session() -> SparkSession:
conf = SparkConf().set("spark.driver.memory", "8g")
spark_session = SparkSession\
.builder\
.master("local[4]")\
.config(conf=conf)\
.appName("Aggregate Transform Tutorial") \
.config("spark.jars", "postgresql-42.5.0.jar") \
.getOrCreate()
return spark_session
def read_data_from_db(spark: SparkSession, connection_str: str, username: str, password: str, table: str) -> DataFrame:
properties = {
"user": username,
"password": password,
"driver": "org.postgresql.Driver"
}
data_df = spark.read.jdbc(
url=connection_str,
properties=properties,
table=table
)
return data_df
def read_sales(spark: SparkSession, host: str, username: str, password: str) -> DataFrame:
table = "sales.salesorderheader"
sales_df = read_data_from_db(spark=spark, connection_str=host, username=username, password=password, table=table)
return sales_df
def data_with_total_sales_sale_rank(spark: SparkSession, host: str, username: str, password: str):
# Load sales.salesorderheader data into dataframe
raw_data = read_sales(spark=spark, host=host, username=username, password=password)
# Specify the window. Partitioned by orderdate, ordered by totaldue in descending order
sum_window = Window.partitionBy("orderdate")
rank_window = Window.partitionBy("orderdate").orderBy(spark_func.col("totaldue").desc())
# Write the query
result = raw_data\
.select("orderdate", "salesorderid", "totaldue")\
.withColumn("sum_of_day", spark_func.sum("totaldue").over(sum_window))\
.withColumn("sale_rank", spark_func.rank().over(rank_window))\
.orderBy("orderdate", "sale_rank")
# Display the data
result.show(truncate=False, n=1000)
def data_with_running_average(spark: SparkSession, host: str, username: str, password: str):
# Load sales.salesorderheader data into dataframe
raw_data = read_sales(spark=spark, host=host, username=username, password=password).repartition(4)
# Specify the window using partitionBy, orderBy and rowsBetween
running_avg_window = Window.partitionBy("territoryid").orderBy("orderdate").rowsBetween(-3, -1)
result = raw_data \
.select("territoryid", "orderdate", "totaldue") \
.groupby("territoryid", "orderdate")\
.agg(spark_func.sum("totaldue").alias("totaldue"))\
.withColumn("running_avg", spark_func.avg("totaldue").over(running_avg_window))
result.show(truncate=False, n=1000)
if __name__ == '__main__':
connection_str = "jdbc:postgresql://localhost:5432/Adventureworks"
username = "postgres"
password = "postgres"
spark = create_spark_session()
data_with_total_sales_sale_rank(spark=spark, host=connection_str, username=username, password=password)
data_with_running_average(spark=spark, host=connection_str, username=username, password=password)
time.sleep(10000)