-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecommender.py
139 lines (102 loc) · 5.37 KB
/
Recommender.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from sklearn.cluster import KMeans
import numpy as np
import ast
import random
book_genres = ['young-adult', 'poetry', 'fantasy, paranormal', 'non-fiction',
'mystery, thriller, crime', 'children', 'romance', 'comics, graphic',
'history, historical fiction, biography', 'fiction']
movie_genres = ['Animation', 'Sci-Fi', 'History', 'War', 'Family', 'Mystery',
'Action', 'Music', 'Musical', 'Crime', 'Sport', 'Romance',
'Adventure', 'Fantasy', 'Horror', 'Biography', 'Drama',
'Thriller', 'Comedy', 'Film-Noir', 'Western']
podcast_genres = ['Sports', 'Business', 'NA', 'Music', 'Government', 'Religion & Spirituality',
'Education', 'History', 'Science', 'Health & Fitness', 'News', 'Arts',
'Society & Culture', 'TV & Film', 'Comedy', 'True Crime',
'Fiction', 'Leisure', 'Kids & Family', 'Technology']
class Recommender:
def __init__(self, podcasts_data, musics_data, movies_data, books_data) -> None:
self.podcasts_data = podcasts_data
self.musics_data =musics_data
self.movies_data = movies_data
self.books_data = books_data
def get_book_vectors(self):
book_vectors = []
for i in self.books_data.values:
genres = ast.literal_eval(i[7])
vector = [10 if g in genres else 0 for g in book_genres]
book_vectors.append(vector)
return np.array(book_vectors)
def get_similar_books(self, user_data:list):
user_data = np.array(user_data)
books = self.get_book_vectors()
n_clusters = 8
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(books)
cluster_label = kmeans.predict(user_data.reshape(1, -1))[0]
book_cluster_labels = kmeans.labels_
book_ids_in_cluster = np.where(book_cluster_labels == cluster_label)[0]
book_titles = self.books_data.iloc[book_ids_in_cluster, 0].tolist()
if len(book_titles) < 5:
remaining_count = 5 - len(book_titles)
all_book_titles = self.books_data.iloc[:, 0].tolist()
for i in range(remaining_count):
random_title = random.choice(all_book_titles)
while random_title in book_titles:
random_title = random.choice(all_book_titles)
book_titles.append(random_title)
return book_titles
def get_movie_vectors(self, favorite_actors):
movie_vectors = []
for i, row in self.movies_data.iterrows():
score = -10
if any(actor in [row['Star1'], row['Star2'], row['Star3'], row['Star4']] for actor in favorite_actors):
score = 10
genres = row['Genre'].split(', ')
vector = [10 if g in genres else 0 for g in movie_genres]
movie_vectors.append([score] + vector)
return np.array(movie_vectors)
def get_similar_movies(self, user_fav_actors, user_genres):
user_favorite_genres = np.array(user_genres)
user_favorite_genres = np.insert(user_favorite_genres, 0, 10)
movies = self.get_movie_vectors(user_fav_actors)
n_clusters = 8
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(movies)
cluster_label = kmeans.predict(user_favorite_genres.reshape(1, -1))[0]
movie_cluster_labels = kmeans.labels_
movie_ids_in_cluster = np.where(movie_cluster_labels == cluster_label)[0]
recommended_movies = self.movies_data.iloc[movie_ids_in_cluster, :]
recommended_movies = recommended_movies.sort_values(by='IMDB_Rating', ascending=False)
return recommended_movies.iloc[:20, 0].tolist()
def get_podcast_vectors(self, fav_producer):
podcast_vectors = []
for i, row in self.podcasts_data.iterrows():
score = -10
if any(producer in row['producer'] for producer in fav_producer):
score = 10
genres = row['genre']
vector = [10 if g == genres else 0 for g in podcast_genres]
podcast_vectors.append([score] + vector)
return np.array(podcast_vectors)
def get_similar_podcasts(self, favorite_producers, favorite_genres):
podcasts = self.get_podcast_vectors(favorite_producers)
user_favorite_genres = np.array(favorite_genres)
user_favorite_genres = np.insert(user_favorite_genres, 0, 10)
n_clusters = 20
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(podcasts)
cluster_label = kmeans.predict(user_favorite_genres.reshape(1, -1))[0]
podcast_cluster_labels = kmeans.labels_
podcast_ids_in_cluster = np.where(podcast_cluster_labels == cluster_label)[0]
if len(podcast_ids_in_cluster) == 0:
return []
recommended_podcasts = self.podcasts_data.iloc[podcast_ids_in_cluster, :]
recommended_podcasts = recommended_podcasts.sort_values(by='rating', ascending=False)
return recommended_podcasts.iloc[:20, 8].tolist()
def get_similar_musics(self, user_fav_artists):
similar_musics = []
for index, row in self.musics_data.iterrows():
if row['Artist'] in user_fav_artists:
similar_musics.append(row)
sorted_musics = sorted(similar_musics, key=lambda x: x['Likes'], reverse=True)
return [music['ID'] for music in sorted_musics[:20]]