-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
97 lines (71 loc) · 4.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import pandas as pd
import numpy as np
import unittest
from Recommender import Recommender
book_genres = ['young-adult', 'poetry', 'fantasy, paranormal', 'non-fiction',
'mystery, thriller, crime', 'children', 'romance', 'comics, graphic',
'history, historical fiction, biography', 'fiction']
movie_genres = ['Animation', 'Sci-Fi', 'History', 'War', 'Family', 'Mystery',
'Action', 'Music', 'Musical', 'Crime', 'Sport', 'Romance',
'Adventure', 'Fantasy', 'Horror', 'Biography', 'Drama',
'Thriller', 'Comedy', 'Film-Noir', 'Western']
podcast_genres = ['Sports', 'Business', 'NA', 'Music', 'Government', 'Religion & Spirituality',
'Education', 'History', 'Science', 'Health & Fitness', 'News', 'Arts',
'Society & Culture', 'TV & Film', 'Comedy', 'True Crime',
'Fiction', 'Leisure', 'Kids & Family', 'Technology']
class TestRecommender(unittest.TestCase):
def setUp(self):
self.books_data = pd.read_csv('datasets/books_dataset.csv')
self.musics_data = pd.read_csv('datasets/musics_dataset.csv')
self.movies_data = pd.read_csv('datasets/movies_dataset.csv', encoding='ISO-8859-1')
self.podcasts_data = pd.read_json('datasets/podcast.json')
self.recommender = Recommender(self.podcasts_data, self.musics_data, self.movies_data, self.books_data)
def test_get_book_vectors(self):
book_vectors = self.recommender.get_book_vectors()
self.assertIsInstance(book_vectors, np.ndarray)
self.assertEqual(book_vectors.shape, (self.books_data.shape[0], len(book_genres)))
# Test if the function returns a numpy array with only 0 and 10 values
self.assertTrue(np.isin(book_vectors, [0, 10]).all())
def test_get_similar_books(self):
user_data = [0, 10, 0, 0, 0, 0, 0, 0, 0, 0]
book_titles = self.recommender.get_similar_books(user_data)
self.assertIsInstance(book_titles, list)
self.assertTrue(all(isinstance(title, str) for title in book_titles))
# Test if the function returns at least 5 book titles
self.assertGreaterEqual(len(book_titles), 5)
def test_get_movie_vectors(self):
favorite_actors = ['Tom Hanks', 'Julia Roberts', 'Brad Pitt']
movie_vectors = self.recommender.get_movie_vectors(favorite_actors)
# Verify that the output has the correct shape
self.assertEqual(movie_vectors.shape, (self.movies_data.shape[0], len(movie_genres) + 1))
# Verify that the first element of each row is either 10 or -10
self.assertTrue(np.isin(movie_vectors[:, 0], [-10, 10]).all())
# Verify that the remaining elements of each row are either 0 or 10
self.assertTrue(np.isin(movie_vectors[:, 1:], [0, 10]).all())
def test_get_similar_movies(self):
user_fav_actors = ['Tom Hanks', 'Leonardo DiCaprio']
user_genres = np.array([1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0])
recommended_movies = self.recommender.get_similar_movies(user_fav_actors, user_genres)
self.assertIsInstance(recommended_movies, list)
self.assertTrue(all(isinstance(title, str) for title in recommended_movies))
# Test if the function returns at least 20 movie titles
self.assertGreaterEqual(len(recommended_movies), 20)
def test_get_podcast_vectors(self):
podcast_vectors = self.recommender.get_podcast_vectors(['NPR', 'WNYC Studios'])
self.assertIsInstance(podcast_vectors, np.ndarray)
self.assertEqual(podcast_vectors.shape, (self.podcasts_data.shape[0], len(podcast_genres) + 1))
def test_get_similar_podcasts(self):
# Test if the function returns a list of podcast titles
favorite_producers = ['NPR', 'WNYC Studios']
favorite_genres = [1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1]
recommended_podcasts = self.recommender.get_similar_podcasts(favorite_producers, favorite_genres)
self.assertIsInstance(recommended_podcasts, list)
self.assertTrue(all(isinstance(title, str) for title in recommended_podcasts))
def test_get_similar_musics(self):
# Test if the function returns a list of music IDs
user_fav_artists = ['Taylor Swift', 'Ed Sheeran']
similar_musics = self.recommender.get_similar_musics(user_fav_artists)
self.assertIsInstance(similar_musics, list)
self.assertTrue(all(isinstance(id, str) for id in similar_musics))
if __name__ == '__main__':
unittest.main()