forked from sthalles/carp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_carp.py
executable file
·428 lines (366 loc) · 17.9 KB
/
main_carp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import argparse
import os
import shutil
import sys
import datetime
import time
import math
import yaml
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torchvision import datasets
from torchvision import models as torchvision_models
from torch.utils.tensorboard import SummaryWriter
from modules.carp_head import CARPHead
from modules.carp_loss import CARPLoss
from modules.random_partition import RandomPartition
from modules.view_generator import ViewGenerator
import utils
torchvision_archs = sorted(name for name in torchvision_models.__dict__
if name.islower() and not name.startswith("__")
and callable(torchvision_models.__dict__[name]))
def get_args_parser():
parser = argparse.ArgumentParser('CARP', add_help=False)
# Model parameters
parser.add_argument('--arch', default='resnet50', type=str,
choices=torchvision_archs,
help="""Name of architecture to train.""")
parser.add_argument('--out_dim', default=65536, type=int, help="""Dimensionality of
the CARP head output.""")
parser.add_argument('--norm_last_layer', default=True, type=utils.bool_flag,
help="""Whether or not to weight normalize the last layer of the CARP head.""")
parser.add_argument('--momentum_teacher', default=0.99, type=float, help="""Base EMA
parameter for teacher update. The value is increased to 1 during training with cosine schedule.""")
parser.add_argument('--use_bn_in_head', default=True, type=utils.bool_flag,
help="Whether to use batch normalizations in projection head (Default: True)")
# Training/Optimization parameters
parser.add_argument('--use_fp16', type=utils.bool_flag, default=True, help="""Whether or not
to use half precision for training.""")
parser.add_argument('--weight_decay', type=float, default=0.000001, help="""Initial value of the
weight decay.""")
parser.add_argument('--weight_decay_end', type=float, default=0.000001, help="""Final value of the
weight decay. We use a cosine schedule for WD.""")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="""We use gradient
accumulation to simulate large batch sizes in small gpus.""")
parser.add_argument('--batch_size_per_gpu', default=32, type=int,
help='Per-GPU batch-size : number of distinct images loaded on one GPU.')
parser.add_argument('--epochs', default=100, type=int,
help='Number of epochs of training.')
parser.add_argument("--lr", default=0.45, type=float, help="""Learning rate at the end of
linear warmup (highest LR used during training). The learning rate is linearly scaled
with the batch size, and specified here for a reference batch size of 256.""")
parser.add_argument("--warmup_epochs", default=0, type=int,
help="Number of epochs for the linear learning-rate warm up.")
parser.add_argument('--min_lr', type=float, default=0.0048, help="""Target LR at the
end of optimization. We use a cosine LR schedule with linear warmup.""")
parser.add_argument('--optimizer', default='lars', type=str,
choices=['lars'], help="""Type of optimizer.""")
parser.add_argument("--partition_size", default=512, type=int,
help="The number of random prototypes in a partition.")
parser.add_argument("--bottleneck_dim", default=256,
type=int, help="Dimensionality of the embedding vector.")
# Multi-crop parameters
parser.add_argument('--global_crops_scale', type=float, nargs='+', default=(0.2, 1.),
help="""Scale range of the cropped image before resizing, relatively to the origin image.
Used for large global view cropping.""")
parser.add_argument('--local_crops_number', type=int, default=6, help="""Number of small
local views to generate. Set this parameter to 0 to disable multi-crop training.""")
parser.add_argument('--local_crops_scale', type=float, nargs='+', default=(0.05, 0.2),
help="""Scale range of the cropped image before resizing, relatively to the origin image.
Used for small local view cropping of multi-crop.""")
# Misc
parser.add_argument('--data_path', default='../../../../../../data/ImageNet2012/train', type=str,
help='Please specify path to the ImageNet training data.')
parser.add_argument('--resume_from_dir', default=".",
type=str, help='Path to save logs and checkpoints.')
parser.add_argument('--saveckp_freq', default=25, type=int,
help='Save checkpoint every x epochs.')
parser.add_argument('--print_freq', default=100, type=int,
help='Save checkpoint every x epochs.')
parser.add_argument('--seed', default=0, type=int, help='Random seed.')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of data loading workers per GPU.')
parser.add_argument("--dist_url", default="env://", type=str, help="""url used to set up
distributed training; see https://pytorch.org/docs/stable/distributed.html""")
parser.add_argument("--local_rank", default=0, type=int,
help="Please ignore and do not set this argument.")
return parser
def train_carp(args):
utils.init_distributed_mode(args)
utils.fix_random_seeds(args.seed)
print("git:\n {}\n".format(utils.get_sha()))
print("\n".join("%s: %s" % (k, str(v))
for k, v in sorted(dict(vars(args)).items())))
cudnn.benchmark = True
# ============ preparing data ... ============
transform = ViewGenerator(
args.global_crops_scale,
args.local_crops_scale,
args.local_crops_number,
)
dataset = datasets.ImageFolder(args.data_path, transform=transform)
sampler = torch.utils.data.DistributedSampler(dataset, shuffle=True)
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
batch_size=args.batch_size_per_gpu,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True,
)
print(f"Data loaded: there are {len(dataset)} images.")
# ============ building student and teacher networks ... ============
if args.arch in torchvision_models.__dict__.keys():
student = torchvision_models.__dict__[
args.arch](zero_init_residual=True)
teacher = torchvision_models.__dict__[
args.arch](zero_init_residual=True)
embed_dim = student.fc.weight.shape[1]
else:
print(f"Unknow architecture: {args.arch}")
# multi-crop wrapper handles forward with inputs of different resolutions
student = utils.MultiCropWrapper(student, CARPHead(
embed_dim,
args.out_dim,
use_bn=args.use_bn_in_head,
norm_last_layer=args.norm_last_layer,
bottleneck_dim=args.bottleneck_dim
))
teacher = utils.MultiCropWrapper(
teacher,
CARPHead(embed_dim, args.out_dim, args.use_bn_in_head,
bottleneck_dim=args.bottleneck_dim),
)
# move networks to gpu
student, teacher = student.cuda(), teacher.cuda()
# synchronize batch norms (if any)
if utils.has_batchnorms(student):
student = nn.SyncBatchNorm.convert_sync_batchnorm(student)
teacher = nn.SyncBatchNorm.convert_sync_batchnorm(teacher)
# we need DDP wrapper to have synchro batch norms working...
teacher = nn.parallel.DistributedDataParallel(
teacher, device_ids=[args.gpu])
teacher_without_ddp = teacher.module
else:
# teacher_without_ddp and teacher are the same thing
teacher_without_ddp = teacher
student = nn.parallel.DistributedDataParallel(
student, device_ids=[args.gpu])
# teacher and student start with the same weights
teacher_without_ddp.load_state_dict(student.module.state_dict())
# there is no backpropagation through the teacher, so no need for gradients
for p in teacher.parameters():
p.requires_grad = False
print(f"Student and Teacher are built: they are both {args.arch} network.")
# total number of crops = 2 global crops + local_crops_number
args.ncrops = args.local_crops_number + 2
# ============ preparing loss ... ============
criterion = CARPLoss()
# ============ preparing optimizer ... ============
params_groups = utils.get_params_groups(student)
# to use with convnet and large batches
optimizer = utils.LARS(params_groups)
# init optimizer
optimizer.zero_grad()
# for mixed precision training
fp16_scaler = torch.cuda.amp.GradScaler()
# ============ init schedulers ... ============
lr_schedule = utils.cosine_scheduler(
args.lr * (args.gradient_accumulation_steps * args.batch_size_per_gpu *
utils.get_world_size()) / 256., # linear scaling rule
args.min_lr,
args.epochs, len(data_loader),
warmup_epochs=args.warmup_epochs,
)
wd_schedule = utils.cosine_scheduler(
args.weight_decay,
args.weight_decay_end,
args.epochs, len(data_loader),
)
# momentum parameter is increased to 1. during training with a cosine schedule
momentum_schedule = utils.cosine_scheduler(args.momentum_teacher, 1,
args.epochs, len(data_loader))
print(f"Loss, optimizer and schedulers ready.")
# ============ optionally resume training ... ============
to_restore = {"epoch": 0}
utils.restart_from_checkpoint(
os.path.join(args.resume_from_dir, "checkpoint.pth"),
run_variables=to_restore,
student=student,
teacher=teacher,
optimizer=optimizer,
fp16_scaler=fp16_scaler
)
start_epoch = to_restore["epoch"]
summary_writer = None
if utils.is_main_process():
summary_writer = SummaryWriter()
shutil.copyfile(
"./main_carp.py", os.path.join(summary_writer.log_dir,
"main_carp.py")
)
shutil.copyfile(
"./utils.py", os.path.join(summary_writer.log_dir, "utils.py")
)
stats_file = open(
os.path.join(summary_writer.log_dir, "stats.txt"), "a", buffering=1
)
print(" ".join(sys.argv))
print(" ".join(sys.argv), file=stats_file)
with open(os.path.join(summary_writer.log_dir, "metadata.txt"), "a") as f:
yaml.dump(args, f, allow_unicode=True)
f.write(str(student))
f.write(str(teacher))
random_partitioning = RandomPartition(args).cuda()
start_time = time.time()
print("Starting CARP training !")
for epoch in range(start_epoch, args.epochs):
data_loader.sampler.set_epoch(epoch)
# ============ training one epoch of CARP ... ============
train_one_epoch(student, teacher, teacher_without_ddp, criterion,
data_loader, optimizer, lr_schedule, wd_schedule, momentum_schedule,
epoch, fp16_scaler, random_partitioning, summary_writer, args)
# ============ writing logs ... ============
save_dict = {
'student': student.state_dict(),
'teacher': teacher.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch + 1,
'args': args
}
if fp16_scaler is not None:
save_dict['fp16_scaler'] = fp16_scaler.state_dict()
if summary_writer is not None:
utils.save_on_master(save_dict, os.path.join(
summary_writer.log_dir, 'checkpoint.pth'))
if args.saveckp_freq and (epoch + 1) % args.saveckp_freq == 0:
if summary_writer is not None:
utils.save_on_master(save_dict, os.path.join(
summary_writer.log_dir, f'checkpoint{epoch:04}.pth'))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def train_one_epoch(student, teacher, teacher_without_ddp, criterion, data_loader,
optimizer, lr_schedule, wd_schedule, momentum_schedule, epoch,
fp16_scaler, random_partitioning, summary_writer, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
learning_rates = AverageMeter('LR', ':.4e')
losses = AverageMeter('Loss', ':.4e')
progress = ProgressMeter(
len(data_loader),
[batch_time, data_time, learning_rates, losses],
prefix="Epoch: [{}]".format(epoch))
end = time.time()
for i, (images, _) in enumerate(data_loader):
# measure data loading time
data_time.update(time.time() - end)
it = len(data_loader) * epoch + i # global training iteration
lr = lr_schedule[it]
m = momentum_schedule[it]
learning_rates.update(lr)
sync_gradients = (
(i + 1) % args.gradient_accumulation_steps == 0) or (i + 1 == len(data_loader))
# move images to gpu
images = [im.cuda(non_blocking=True) for im in images]
if not sync_gradients:
with student.no_sync():
with torch.cuda.amp.autocast(fp16_scaler is not None):
student_output = student(images)
# only the 2 global views pass through the teacher
teacher_output = teacher(images[:2])
# Random Parition strategy
student_output, teacher_output = random_partitioning(
student_output.float(), teacher_output.float(), args.partition_size)
c, h = criterion(student_output, teacher_output)
loss = c + h
loss /= args.gradient_accumulation_steps
# accumulate gradients
fp16_scaler.scale(loss).backward()
else:
# update learning rate according to schedule
for j, param_group in enumerate(optimizer.param_groups):
param_group["lr"] = lr
if j == 0: # only the first group is regularized
param_group["weight_decay"] = wd_schedule[it]
with torch.cuda.amp.autocast(fp16_scaler is not None):
student_output = student(images)
# only the 2 global views pass through the teacher
teacher_output = teacher(images[:2])
# random Parition strategy
student_output, teacher_output = random_partitioning(
student_output.float(), teacher_output.float(), args.partition_size)
c, h = criterion(student_output, teacher_output)
loss = c + h
loss /= args.gradient_accumulation_steps
# EMA update for the teacher
with torch.no_grad():
for param_q, param_k in zip(student.module.parameters(), teacher_without_ddp.parameters()):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
fp16_scaler.scale(loss).backward()
fp16_scaler.step(optimizer)
fp16_scaler.update()
optimizer.zero_grad()
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()), force=True)
sys.exit(1)
losses.update(loss.item(), images[0].size(0))
if summary_writer is not None and it % args.print_freq == 0:
acc1, acc5 = utils.accuracy(student_output[0][0], torch.argmax(
teacher_output[1][0], dim=1), topk=(1, 5))
summary_writer.add_scalar("loss/total", loss.item(), it)
summary_writer.add_scalar("loss/consistency", c.item(), it)
summary_writer.add_scalar("loss/entropy", h.item(), it)
summary_writer.add_scalar("momentum", m, it)
summary_writer.add_scalar("lr", lr, it)
summary_writer.add_scalar("acc/top1", acc1, it)
summary_writer.add_scalar("acc/top5", acc5, it)
n_protos = student_output[0][0].shape[1]
summary_writer.add_histogram(
f"dist/probs/{n_protos}", torch.argmax(student_output[0][0], dim=1), it)
summary_writer.add_histogram(
f"dist/targets/{n_protos}", torch.argmax(teacher_output[1][0], dim=1), it)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
if __name__ == '__main__':
parser = argparse.ArgumentParser('CARP', parents=[get_args_parser()])
args = parser.parse_args()
# Path(args.output_dir).mkdir(parents=True, exist_ok=True)
train_carp(args)