-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvpt.sh
48 lines (44 loc) · 1.56 KB
/
vpt.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/bin/bash
export WANDB_PROJECT= "OLA-VLM"
export WANDB_NAME="v-pretrain_OLA-VLM-CLIP-ViT-Llama3-8b"
# Base LLM choices:
# Llama3-8b: meta-llama/Meta-Llama-3-8B-Instruct (llava_llama_3)
# Phi3-4k-mini: microsoft/Phi-3-mini-4k-instruct (llava_phi_3)
# Base encoder choices:
# CLIP-ViT-L: openai/clip-vit-large-patch14-336
# CLIP-ConvNeXT-XXL: laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup-res768
# 8 GPUs
deepspeed ola_vlm/train/train_mem.py \
--deepspeed ./scripts/zero2.json \
--model_name_or_path outputs/pretrain_dsg_OLA-VLM-CLIP-ViT-Llama3-8b \
--version llava_llama_3 \
--data_path datasets/allava/ALLaVA-Caption.json \
--image_folder datasets/allava \
--vision_tower openai/clip-vit-large-patch14-336 \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--image_aspect_ratio pad \
--group_by_modality_length True \
--bf16 True \
--output_dir outputs/v-pretrain_OLA-VLM-CLIP-ViT-Llama3-8b \
--num_train_epochs 1 \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 1 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 200 \
--save_total_limit 3 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb