diff --git a/IsarMathLib/InductiveSeq_ZF.thy b/IsarMathLib/InductiveSeq_ZF.thy index d647bd2..659242d 100644 --- a/IsarMathLib/InductiveSeq_ZF.thy +++ b/IsarMathLib/InductiveSeq_ZF.thy @@ -1145,7 +1145,7 @@ proof - ultimately have "?B(n,n #+ 1) = 0" unfolding Binom_def by simp with assms \?B(n,n) \ nat\ show ?thesis - using succ_add_one(2) binom_prop add_subctract add_0 add_commute + using succ_add_one(2) binom_prop add_subtract add_0 add_commute by simp qed diff --git a/IsarMathLib/IntGroup_ZF.thy b/IsarMathLib/IntGroup_ZF.thy index 46c7ec0..c533db0 100644 --- a/IsarMathLib/IntGroup_ZF.thy +++ b/IsarMathLib/IntGroup_ZF.thy @@ -259,7 +259,7 @@ lemma (in group_int0) powz_hom_neg_nneg2: by simp text\The next theorem collects the results from the above lemmas to show - the power homomorphism property hols for any pair of integer numbers + the power homomorphism property holds for any pair of integer numbers and any group element. \ theorem (in group_int0) powz_hom_prop: assumes "z\<^sub>1\\" "z\<^sub>2\\" "x\G" diff --git a/isar2html2.0/isarhtml/index.html b/isar2html2.0/isarhtml/index.html index cd9614d..ae24e35 100644 --- a/isar2html2.0/isarhtml/index.html +++ b/isar2html2.0/isarhtml/index.html @@ -187,6 +187,8 @@

About this site

Int_ZF_3

+

Int_ZF_3

+

Real_ZF

Real_ZF_1

diff --git a/isar2html2.0/theories.conf b/isar2html2.0/theories.conf index 9ab9990..e7587eb 100644 --- a/isar2html2.0/theories.conf +++ b/isar2html2.0/theories.conf @@ -55,6 +55,7 @@ Int_ZF_1 IntDiv_ZF_IML Int_ZF_2 Int_ZF_3 +IntGroup_ZF Real_ZF Real_ZF_1 Complex_ZF