forked from jchelly/SOAP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcompute_halo_properties.py
575 lines (521 loc) · 20.6 KB
/
compute_halo_properties.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
#!/bin/env python
# Initialize mpi4py with thread support
import mpi4py
mpi4py.rc.threads = True
from mpi4py import MPI
comm_world = MPI.COMM_WORLD
comm_world_rank = comm_world.Get_rank()
comm_world_size = comm_world.Get_size()
import os
import os.path
import time
import traceback
import numpy as np
import unyt
import halo_centres
import swift_cells
import chunk_tasks
import task_queue
import lustre
import soap_args
import SO_properties
import subhalo_properties
import aperture_properties
import result_set
from combine_chunks import combine_chunks, sub_snapnum
import projected_aperture_properties
from recently_heated_gas_filter import RecentlyHeatedGasFilter
from stellar_age_calculator import StellarAgeCalculator
from cold_dense_gas_filter import ColdDenseGasFilter
from category_filter import CategoryFilter
from parameter_file import ParameterFile
from mpi_timer import MPITimer
# Set numpy to raise divide by zero, overflow and invalid operation errors as exceptions
np.seterr(divide="raise", over="raise", invalid="raise")
def split_comm_world():
# Communicator containing all ranks on this node
comm_intra_node = MPI.COMM_WORLD.Split_type(MPI.COMM_TYPE_SHARED)
comm_intra_node_rank = comm_intra_node.Get_rank()
# Communicator containing first rank on each node only:
# other ranks will have comm_inter_node=MPI_COMM_NULL.
colour = 0 if comm_intra_node_rank == 0 else MPI.UNDEFINED
key = MPI.COMM_WORLD.Get_rank()
comm_inter_node = MPI.COMM_WORLD.Split(colour, key)
return comm_intra_node, comm_inter_node
def get_rank_and_size(comm):
if comm == MPI.COMM_NULL:
return (-1, -1)
else:
return (comm.Get_rank(), comm.Get_size())
def compute_halo_properties():
# Read command line parameters
args = soap_args.get_soap_args(comm_world)
# Enable profiling, if requested
if args.profile == 2 or (args.profile == 1 and comm_world_rank == 0):
import cProfile, pstats, io
pr = cProfile.Profile()
pr.enable()
# Start the clock
comm_world.barrier()
t0 = time.time()
# Split MPI ranks according to which node they are on.
# Only the first rank on each node belongs to comm_inter_node.
# Others have comm_inter_node=MPI_COMM_NULL and inter_node_rank=-1.
comm_intra_node, comm_inter_node = split_comm_world()
intra_node_rank, intra_node_size = get_rank_and_size(comm_intra_node)
inter_node_rank, inter_node_size = get_rank_and_size(comm_inter_node)
# Report number of ranks, compute nodes etc
if comm_world_rank == 0:
print("Starting halo properties calculation on %d MPI ranks" % comm_world_size)
print(
"Can process %d chunks in parallel using %d ranks per chunk"
% (inter_node_size, intra_node_size)
)
print(
"Number of MPI ranks per node reading snapshots: %d"
% args.max_ranks_reading
)
print("Halo format is %s" % args.halo_format)
print("Halo basename is %s" % args.halo_basename)
print("Output file is %s" % args.output_file)
print("Snapshot number is %d" % args.snapshot_nr)
# Open the snapshot and read SWIFT cell structure, units etc
if comm_world_rank == 0:
swift_filename = sub_snapnum(args.swift_filename, args.snapshot_nr)
extra_input = [
sub_snapnum(filename, args.snapshot_nr) for filename in args.extra_input
]
if args.reference_snapshot is not None:
swift_filename_ref = sub_snapnum(
args.swift_filename, args.reference_snapshot
)
extra_input_ref = [
sub_snapnum(filename, args.reference_snapshot)
for filename in args.extra_input
]
else:
swift_filename_ref = None
extra_input_ref = None
try:
cellgrid = swift_cells.SWIFTCellGrid(
swift_filename, extra_input, swift_filename_ref, extra_input_ref
)
except Exception as err_msg:
print(err_msg)
# Thrown if there are issues with the input files
comm_world.Abort(1)
parsec_cgs = cellgrid.constants["parsec"]
solar_mass_cgs = cellgrid.constants["solar_mass"]
a = cellgrid.a
else:
cellgrid = None
parsec_cgs = None
solar_mass_cgs = None
a = None
cellgrid, parsec_cgs, solar_mass_cgs, a = comm_world.bcast(
(cellgrid, parsec_cgs, solar_mass_cgs, a)
)
# Check that the extra-input files are valid
cellgrid.verify_extra_input(comm_world)
# Process parameter file
if args.snipshot is None:
args.snipshot = cellgrid.snipshot
if comm_world_rank == 0:
parameter_file = ParameterFile(
file_name=args.config_filename, snipshot=args.snipshot
)
else:
parameter_file = None
parameter_file = comm_world.bcast(parameter_file)
cellgrid.snapshot_datasets.setup_aliases(parameter_file.get_aliases())
cellgrid.snapshot_datasets.setup_defined_constants(
parameter_file.get_defined_constants()
)
# Try to load parameters for RecentlyHeatedGasFilter. If a property that uses the
# filter is calculated when the parameters could not be found, the code will
# crash.
try:
recently_heated_params = args.calculations["recently_heated_gas_filter"]
if (not args.dmo) and (recently_heated_params["use_AGN_delta_T"]):
assert cellgrid.AGN_delta_T.value != 0, "Invalid value for AGN_delta_T"
recently_heated_gas_filter = RecentlyHeatedGasFilter(
cellgrid,
float(recently_heated_params["delta_time_myr"]) * unyt.Myr,
float(recently_heated_params["use_AGN_delta_T"]),
True,
delta_logT_min=-1.0,
delta_logT_max=0.3,
)
except KeyError:
recently_heated_gas_filter = RecentlyHeatedGasFilter(
cellgrid,
0 * unyt.Myr,
False,
False,
)
stellar_age_calculator = StellarAgeCalculator(cellgrid)
# Try to load parameters for ColdDenseGasFilter. If a property that uses the
# filter is calculated when the parameters could not be found, the code will
# crash.
try:
cold_dense_params = args.calculations["cold_dense_gas_filter"]
cold_dense_gas_filter = ColdDenseGasFilter(
float(cold_dense_params["maximum_temperature_K"]) * unyt.K,
float(cold_dense_params["minimum_hydrogen_number_density_cm3"])
/ unyt.cm ** 3,
True,
)
except KeyError:
cold_dense_gas_filter = ColdDenseGasFilter(0 * unyt.K, 0 / unyt.cm ** 3, False)
default_filters = {
"general": {
"limit": 100,
"properties": [
"BoundSubhalo/NumberOfDarkMatterParticles",
"BoundSubhalo/NumberOfGasParticles",
"BoundSubhalo/NumberOfStarParticles",
"BoundSubhalo/NumberOfBlackHoleParticles",
],
"combine_properties": "sum",
},
"dm": {
"limit": 100,
"properties": ["BoundSubhalo/NumberOfDarkMatterParticles"],
},
"gas": {"limit": 100, "properties": ["BoundSubhalo/NumberOfGasParticles"]},
"star": {"limit": 100, "properties": ["BoundSubhalo/NumberOfStarParticles"]},
"baryon": {
"limit": 100,
"properties": [
"BoundSubhalo/NumberOfGasParticles",
"BoundSubhalo/NumberOfStarParticles",
],
"combine_properties": "sum",
},
}
category_filter = CategoryFilter(
parameter_file.get_filters(default_filters), dmo=args.dmo
)
# Get the full list of property calculations we can do
# Note that the order matters: we need to do the BoundSubhalo first,
# since quantities are filtered based on the particle numbers in there
# Similarly, things like SO 5xR500_crit can only be done after
# SO 500_crit for obvious reasons
halo_prop_list = []
# Make sure BoundSubhalo is always first, since it's used for filters
subhalo_variations = parameter_file.get_halo_type_variations(
"SubhaloProperties", {"Bound": {"bound_only": True}}
)
for variation in subhalo_variations:
if subhalo_variations[variation]["bound_only"]:
halo_prop_list.append(
subhalo_properties.SubhaloProperties(
cellgrid,
parameter_file,
recently_heated_gas_filter,
stellar_age_calculator,
category_filter,
bound_only=subhalo_variations[variation]["bound_only"],
)
)
assert len(halo_prop_list) > 0, "BoundSubhalo must be calculated"
# Adding FOFSubhaloProperties if present
for variation in subhalo_variations:
if not subhalo_variations[variation]["bound_only"]:
halo_prop_list.append(
subhalo_properties.SubhaloProperties(
cellgrid,
parameter_file,
recently_heated_gas_filter,
stellar_age_calculator,
category_filter,
bound_only=subhalo_variations[variation]["bound_only"],
)
)
SO_variations = parameter_file.get_halo_type_variations(
"SOProperties",
{
"200_mean": {"value": 200.0, "type": "mean"},
"50_crit": {"value": 50.0, "type": "crit"},
"100_crit": {"value": 100.0, "type": "crit"},
"200_crit": {"value": 200.0, "type": "crit"},
"500_crit": {"value": 500.0, "type": "crit"},
"1000_crit": {"value": 1000.0, "type": "crit"},
"2500_crit": {"value": 2500.0, "type": "crit"},
"BN98": {"value": 0.0, "type": "BN98"},
"5xR500_crit": {"value": 500.0, "type": "crit", "radius_multiple": 5.0},
},
)
# first add non radius multiples to make sure the radius multiples can be
# computed
for variation in SO_variations:
if (
"radius_multiple" in SO_variations[variation]
and SO_variations[variation]["radius_multiple"] > 0.0
):
continue
if "core_excision_fraction" in SO_variations[variation]:
halo_prop_list.append(
SO_properties.CoreExcisedSOProperties(
cellgrid,
parameter_file,
recently_heated_gas_filter,
category_filter,
SO_variations[variation].get("filter", "basic"),
SO_variations[variation]["value"],
SO_variations[variation]["type"],
core_excision_fraction=SO_variations[variation][
"core_excision_fraction"
],
)
)
else:
halo_prop_list.append(
SO_properties.SOProperties(
cellgrid,
parameter_file,
recently_heated_gas_filter,
category_filter,
SO_variations[variation].get("filter", "basic"),
SO_variations[variation]["value"],
SO_variations[variation]["type"],
)
)
for variation in SO_variations:
if (
"radius_multiple" in SO_variations[variation]
and SO_variations[variation]["radius_multiple"] > 0.0
):
halo_prop_list.append(
SO_properties.RadiusMultipleSOProperties(
cellgrid,
parameter_file,
recently_heated_gas_filter,
category_filter,
SO_variations[variation].get("filter", "basic"),
SO_variations[variation]["value"],
SO_variations[variation]["radius_multiple"],
SO_variations[variation]["type"],
)
)
aperture_variations = parameter_file.get_halo_type_variations(
"ApertureProperties",
{
"inclusive_10_kpc": {"radius_in_kpc": 10.0, "inclusive": True},
"inclusive_30_kpc": {"radius_in_kpc": 30.0, "inclusive": True},
"inclusive_50_kpc": {"radius_in_kpc": 50.0, "inclusive": True},
"inclusive_100_kpc": {"radius_in_kpc": 100.0, "inclusive": True},
"inclusive_300_kpc": {"radius_in_kpc": 300.0, "inclusive": True},
"inclusive_500_kpc": {"radius_in_kpc": 500.0, "inclusive": True},
"inclusive_1000_kpc": {"radius_in_kpc": 1000.0, "inclusive": True},
"inclusive_3000_kpc": {"radius_in_kpc": 3000.0, "inclusive": True},
"exclusive_10_kpc": {"radius_in_kpc": 10.0, "inclusive": False},
"exclusive_30_kpc": {"radius_in_kpc": 30.0, "inclusive": False},
"exclusive_50_kpc": {"radius_in_kpc": 50.0, "inclusive": False},
"exclusive_100_kpc": {"radius_in_kpc": 100.0, "inclusive": False},
"exclusive_300_kpc": {"radius_in_kpc": 300.0, "inclusive": False},
"exclusive_500_kpc": {"radius_in_kpc": 500.0, "inclusive": False},
"exclusive_1000_kpc": {"radius_in_kpc": 1000.0, "inclusive": False},
"exclusive_3000_kpc": {"radius_in_kpc": 3000.0, "inclusive": False},
},
)
for variation in aperture_variations:
if aperture_variations[variation]["inclusive"]:
halo_prop_list.append(
aperture_properties.InclusiveSphereProperties(
cellgrid,
parameter_file,
aperture_variations[variation]["radius_in_kpc"],
recently_heated_gas_filter,
stellar_age_calculator,
cold_dense_gas_filter,
category_filter,
aperture_variations[variation].get("filter", "basic"),
)
)
else:
halo_prop_list.append(
aperture_properties.ExclusiveSphereProperties(
cellgrid,
parameter_file,
aperture_variations[variation]["radius_in_kpc"],
recently_heated_gas_filter,
stellar_age_calculator,
cold_dense_gas_filter,
category_filter,
aperture_variations[variation].get("filter", "basic"),
)
)
projected_aperture_variations = parameter_file.get_halo_type_variations(
"ProjectedApertureProperties",
{
"10_kpc": {"radius_in_kpc": 10.0},
"30_kpc": {"radius_in_kpc": 30.0},
"50_kpc": {"radius_in_kpc": 50.0},
"100_kpc": {"radius_in_kpc": 100.0},
},
)
for variation in projected_aperture_variations:
halo_prop_list.append(
projected_aperture_properties.ProjectedApertureProperties(
cellgrid,
parameter_file,
projected_aperture_variations[variation]["radius_in_kpc"],
category_filter,
projected_aperture_variations[variation].get("filter", "basic"),
)
)
if comm_world_rank == 0 and args.output_parameters:
parameter_file.write_parameters(args.output_parameters)
if len(halo_prop_list) < 1:
raise Exception("Must select at least one halo property calculation!")
# Report calculations to do
if comm_world_rank == 0:
print("Halo property calculations enabled:")
for hp in halo_prop_list:
print(" %s" % hp.name)
if args.centrals_only:
print("for central halos only")
else:
print("for central and satellite halos")
if args.snipshot:
print("Running in snipshot mode")
parameter_file.print_unregistered_properties()
parameter_file.print_invalid_properties()
category_filter.print_filters()
# Ensure output dir exists
if comm_world_rank == 0:
lustre.ensure_output_dir(args.output_file)
comm_world.barrier()
# Read in the halo catalogue:
# All ranks read the file(s) in then gather to rank 0. Also computes search radius for each halo.
halo_basename = sub_snapnum(args.halo_basename, args.snapshot_nr)
so_cat = halo_centres.SOCatalogue(
comm_world,
halo_basename,
args.halo_format,
cellgrid.a_unit,
cellgrid.snap_unit_registry,
cellgrid.boxsize,
args.max_halos,
args.centrals_only,
args.halo_indices,
halo_prop_list,
args.chunks,
args.min_read_radius_cmpc,
)
so_cat.start_request_thread()
# Generate the chunk task list
nr_chunks = so_cat.nr_chunks
if comm_world_rank == 0:
tasks = [
chunk_tasks.ChunkTask(halo_prop_list, chunk_nr, nr_chunks)
for chunk_nr in range(nr_chunks)
]
else:
tasks = None
# Report initial set-up time
comm_world.barrier()
t1 = time.time()
if comm_world_rank == 0:
print(
"Reading %d input halos and setting up %d chunk(s) took %.1fs"
% (so_cat.nr_halos, len(tasks), t1 - t0)
)
# Make a format string to generate the name of the file each chunk task will write to
scratch_file_format = (
args.scratch_dir
+ f"/snapshot_{args.snapshot_nr:04d}/"
+ "chunk_%(file_nr)d.hdf5"
)
# Ensure that the directories which will contain the scratch files exist
if comm_world_rank == 0:
for file_nr in range(nr_chunks):
scratch_file_name = scratch_file_format % {"file_nr": file_nr}
scratch_file_dir = os.path.dirname(scratch_file_name)
try:
os.makedirs(scratch_file_dir)
except OSError:
pass
comm_world.barrier()
# Execute the chunk tasks. This writes one file per chunk with the halo properties.
# For each chunk it returns a list with (name, size, units, description) for each
# quantity that was calculated.
timings = []
task_args = (
cellgrid,
so_cat,
comm_intra_node,
inter_node_rank,
timings,
args.max_ranks_reading,
scratch_file_format,
)
# Catch any errors so we can call MPI_ABORT
try:
metadata = task_queue.execute_tasks(
tasks,
args=task_args,
comm_all=comm_world,
comm_master=comm_inter_node,
comm_workers=comm_intra_node,
)
except Exception as e:
traceback.print_exc()
comm_world.Abort(1)
# Can stop the halo request thread now that all chunk tasks have executed
so_cat.stop_request_thread()
# Check metadata for consistency between chunks. Sets ref_metadata on all ranks,
# including those that processed no halos.
ref_metadata = result_set.check_metadata(metadata, comm_inter_node, comm_world)
# Combine chunks into a single output file
combine_chunks(
args,
cellgrid,
halo_prop_list,
scratch_file_format,
ref_metadata,
nr_chunks,
comm_world,
category_filter,
recently_heated_gas_filter,
cold_dense_gas_filter,
)
# Delete scratch files
comm_world.barrier()
if comm_world_rank == 0:
for file_nr in range(nr_chunks):
os.remove(scratch_file_format % {"file_nr": file_nr})
print("Deleted scratch files.")
comm_world.barrier()
# Stop the clock
comm_world.barrier()
t1 = time.time()
# Find total time spent running tasks
if len(timings) > 0:
task_time_local = sum(timings)
else:
task_time_local = 0.0
task_time_total = comm_world.allreduce(task_time_local)
task_time_fraction = task_time_total / (comm_world_size * (t1 - t0))
# Save profiling results for each MPI rank
if args.profile == 2 or (args.profile == 1 and comm_world_rank == 0):
pr.disable()
# Save profile so it can be loaded back into python for analysis
pr.dump_stats("./profile.%d.dat" % comm_world_rank)
# Dump text version of the profile
s = io.StringIO()
sortby = pstats.SortKey.CUMULATIVE
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
with open("./profile.%d.txt" % comm_world_rank, "w") as profile_file:
profile_file.write(s.getvalue())
if comm_world_rank == 0:
print(
"Fraction of time spent calculating halo properties = %.2f"
% task_time_fraction
)
print("Total elapsed time: %.1f seconds" % (t1 - t0))
print("Done.")
if __name__ == "__main__":
compute_halo_properties()