forked from jchelly/SOAP
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_SO_radius_calculation.py
133 lines (105 loc) · 4.61 KB
/
test_SO_radius_calculation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#!/bin/env python
"""
test_SO_radius_calculation.py
Unit test for the SO radius calculation.
We put this in a separate file to avoid cluttering
SO_properties.py even more.
"""
import numpy as np
import unyt
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as pl
from SO_properties import find_SO_radius_and_mass
from halo_properties import SearchRadiusTooSmallError
def test_SO_radius_calculation():
"""
Unit test find_SO_radius_and_mass().
We generate 100 random particle distributions and try
to find the SO radius.
This produces some figures for visual inspection.
"""
np.random.seed(62)
npart_choices = np.array([10, 100, 1000])
for i in range(50):
npart = np.random.choice(npart_choices)
Mpart = 1.0e9 * unyt.Msun
radius = np.random.exponential(1.0, npart) * unyt.kpc
rmax = radius.max()
ordered_radius = np.sort(radius)
mass = Mpart * (1.0 + 0.2 * (np.random.random(npart) - 0.5))
# add some (10%) random negative masses to simulate neutrinos
idx = np.unique(np.random.randint(0, len(mass), int(0.1 * npart)))
mass[idx] *= -1.0
cumulative_mass = np.cumsum(mass)
ipos = np.argmax(ordered_radius > 0.0)
ordered_radius = ordered_radius[ipos:]
cumulative_mass = cumulative_mass[ipos:]
density = cumulative_mass / (4.0 * np.pi / 3.0 * ordered_radius ** 3)
reference_density = 200.0 * Mpart * npart / (4.0 * np.pi / 3.0 * rmax ** 3)
try:
SO_r, SO_mass, SO_volume = find_SO_radius_and_mass(
ordered_radius, density, cumulative_mass, reference_density
)
print(f"{i:03d}: SO_r: {SO_r}, SO_mass: {SO_mass}")
except SearchRadiusTooSmallError:
print(f"{i:03d}: Radius too small!")
SO_r = -1.0 * unyt.kpc
SO_mass = -1.0 * unyt.Msun
fig, ax = pl.subplots(2, 2, sharex="col")
ordered_radius.convert_to_units("kpc")
density.convert_to_units("g/cm**3")
cumulative_mass.convert_to_units("Msun")
reference_density.convert_to_units("g/cm**3")
SO_r.convert_to_units("kpc")
SO_mass.convert_to_units("Msun")
ax[0][0].semilogy(ordered_radius, density, "o-")
ax[1][0].semilogy(ordered_radius, cumulative_mass, "o-")
if SO_r >= 0.0 * unyt.kpc:
rrange = np.linspace(0.0 * unyt.kpc, 2.0 * SO_r, 100)
Mrange = reference_density * 4.0 * np.pi / 3.0 * rrange ** 3
rrange.convert_to_units("kpc")
Mrange.convert_to_units("Msun")
ax[1][0].semilogy(rrange, Mrange, ":", color="C2")
icross = np.argmin(np.abs(ordered_radius - SO_r))
beg = max(0, icross - 10)
end = min(len(ordered_radius) - 1, icross + 10)
ax[0][1].semilogy(ordered_radius[beg:end], density[beg:end], "o-")
ax[1][1].semilogy(ordered_radius[beg:end], cumulative_mass[beg:end], "o-")
rrange = np.linspace(0.9 * SO_r, 1.1 * SO_r, 100)
Mrange = reference_density * 4.0 * np.pi / 3.0 * rrange ** 3
rrange.convert_to_units("kpc")
Mrange.convert_to_units("Msun")
ax[1][1].semilogy(rrange, Mrange, ":", color="C2")
else:
ax[0][1].semilogy(ordered_radius, density, "o-")
ax[1][1].semilogy(ordered_radius, cumulative_mass, "o-")
ax[0][0].axhline(y=reference_density, linestyle="--", color="C1")
ax[0][1].axhline(y=reference_density, linestyle="--", color="C1")
if SO_r >= 0.0 * unyt.kpc:
ax[1][0].axhline(y=SO_mass, linestyle="--", color="C1")
ax[0][0].axvline(x=SO_r, linestyle="--", color="C1")
ax[1][0].axvline(x=SO_r, linestyle="--", color="C1")
ax[1][1].axhline(y=SO_mass, linestyle="--", color="C1")
ax[0][1].axvline(x=SO_r, linestyle="--", color="C1")
ax[1][1].axvline(x=SO_r, linestyle="--", color="C1")
ax[0][1].plot(SO_r, reference_density, "kx")
ax[1][1].plot(SO_r, SO_mass, "kx")
ax[0][0].set_ylabel("density")
ax[1][0].set_ylabel("cumulative mass")
ax[1][0].set_xlabel("radius")
ax[1][1].set_xlabel("radius")
if SO_r >= 0.0 * unyt.kpc:
ax[0][0].set_title("Success")
else:
ax[0][0].set_title("Failure")
print(f"{i:03d} SO calculation failed")
pl.tight_layout()
pl.savefig(f"test_SO_radius_{i:03d}.png", dpi=300)
fig.clear()
pl.close()
if __name__ == "__main__":
"""
Standalone mode. Run the unit test.
"""
test_SO_radius_calculation()