-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathswift-pipeline
executable file
·576 lines (478 loc) · 19 KB
/
swift-pipeline
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#!/usr/bin/env python3
"""
SWIFT-pipeline is a significantly more complex version of ``velociraptor-plot``.
It uses configuration files along with additional plotting scripts to put together
webpages that can represent whole cosmological simulations easily.
"""
import argparse as ap
from typing import Tuple, List, Any
from p_tqdm import p_map
from time import time
parser = ap.ArgumentParser(
prog="swift-pipeline",
description=(
"Creates a webpage containing many figures out of your SWIFT runs. "
"When creating this page, also creates a metadata file that can be used "
"later with this program to produce comparison webpages between multiple "
"simulations."
),
epilog=(
"Example usage:\n"
"swift-pipeline -C ~/config -c example_0000.properties -s snapshot_0000.hdf5 "
"-o ~/plots/example_0000 -i /path/to/my/sim\n\n"
"Example creating comparisons:\n"
"swift-pipeline -C ~/config -c example_0000.properties example_0000.properties "
"-s snapshot_0000.hdf5 snapshot_0000.hdf5 "
"-o ~/plots/example_0000 -i /path/to/my/first/sim /path/to/my/second/sim\n\n"
),
)
parser.add_argument(
"-C",
"--config",
type=str,
required=True,
help=("Configuration directory, containing config.yml."),
)
parser.add_argument(
"-c",
"--catalogues",
type=str,
required=True,
help="Name of the VELOCIraptor HDF5 .properties file(s). Required.",
nargs="*",
)
parser.add_argument(
"-s",
"--snapshots",
required=True,
type=str,
help="Name of the snapshot file(s). Required.",
nargs="*",
)
parser.add_argument(
"-o",
"--output",
type=str,
required=True,
help="Output directory for figures. Required.",
)
parser.add_argument(
"-i",
"--input",
type=str,
required=False,
default=".",
help=(
"Input directory where the snapshot(s) and properties file(s) are located. "
"Default is the current working directory. If you are running for comparison "
"purposes you will need to ensure that the metadata yaml files have been "
"generated in these folders and have the same basename (--metadata) as is "
"given here."
),
nargs="*",
)
parser.add_argument(
"-d",
"--debug",
required=False,
default=False,
action="store_true",
help="Run in debug mode if this flag is present. Default: no.",
)
parser.add_argument(
"-m",
"--metadata",
required=False,
default="data",
help=(
"Base name of the written metadata file in the input directory. "
"By default this is data, leading to data_XXXX.yml"
),
)
parser.add_argument(
"-n",
"--run-names",
required=False,
default=None,
nargs="*",
help=(
"Overwrite the names given to each run? If not present, the default names "
"from the snapshots are used, and in the case where there are multiple "
"redshifts, we append the redshift."
),
)
parser.add_argument(
"-j",
"--num-of-cpus",
required=False,
type=int,
default=None,
help=(
"Number of CPUs to use for running scripts in parallel. If not specified, uses "
"the maximum number of CPUs avaliable in the system."
),
)
parser.add_argument(
"-M",
"--special",
required=False,
default=None,
help="Run using one of the special modes defined in the configuration file.",
)
parser.add_argument(
"-f",
"--fast",
required=False,
default=False,
action="store_true",
help="Run in fast mode. This only creates the catalogue plots, but does not run any additional scripts.",
)
parser.add_argument(
"-F",
"--no-plots",
required=False,
default=False,
action="store_true",
help="Do not create any plots or web pages. Only produces the autoplotter .yml file. Requires --fast.",
)
if __name__ == "__main__":
# Parse our lovely arguments and pass them to the velociraptor library
from velociraptor.autoplotter.objects import AutoPlotter
from velociraptor.autoplotter.metadata import AutoPlotterMetadata
from velociraptor.autoplotter.compare import (
recreate_instances,
recreate_single_figure,
)
from velociraptor import load
from swiftsimio import load as load_snapshot
from matplotlib import __version__
from matplotlib.pyplot import style
from subprocess import run
from glob import glob
import os
from swiftpipeline.config import Config
from swiftpipeline.html import WebpageCreator
PLOT_FILE_EXTENSION = "png"
args = parser.parse_args()
if args.no_plots and not args.fast:
raise AttributeError("Cannot have --no-plots without --fast!")
is_comparison = len(args.snapshots) > 1
if args.no_plots and is_comparison:
raise AttributeError("Cannot have --no-plots when running in comparison mode.")
# Set up some basic debugging things
if args.debug:
from tqdm import tqdm
# Create a function to print out script runtime statistics as a table
def print_script_runtime_statistics(script_runtimes):
# Init variable to compute the sum of scripts' runtimes
total_runtime = 0.0 # sec
# Add runtimes of all scripts to the sum
for script_name, script_runtime in script_runtimes.items():
if script_name != "Wallclock time":
total_runtime += script_runtime
# Create a key-value pair for the total runtime of the scripts
script_runtimes["Total CPU time"] = total_runtime
# Compute the width of first column in the table (add 3 for padding)
col_width = max(len(name) for name in script_runtimes.keys()) + 3
# Set the width of the columns
first_item_width, second_item_width, third_item_width = col_width, 20, 27
# Make zeroth row
first_item = "Script name".ljust(first_item_width)
second_item = "Run time (s)".ljust(second_item_width)
third_item = "Fraction of total CPU time".ljust(third_item_width)
# Print out table header including the zeroth row
print()
print("Script Run Time Statistics: \n")
print(f"{first_item}{second_item}{third_item}")
print("-" * (first_item_width + second_item_width + third_item_width))
# Create and print out the remaining rows
for script_name, script_runtime in script_runtimes.items():
# Fraction of the total runtime per script
run_time_fraction = script_runtime / script_runtimes["Total CPU time"]
first_item = f"{script_name}".ljust(first_item_width)
second_item = f"{script_runtime:.4f}".ljust(second_item_width)
third_item = f"{run_time_fraction:.6f}".ljust(third_item_width)
# Print row
print(f"{first_item}{second_item}{third_item}")
print()
return
def print_if_debug(string: str):
if args.debug:
print(string)
print_if_debug("Running in debug mode. Arguments given are:")
for name, value in dict(vars(args)).items():
print_if_debug(f"{name}: {value}")
config = Config(config_directory=args.config)
special_mode = None
if args.special is not None:
special_mode = config.get_special_mode(args.special)
print_if_debug(f"Matplotlib version: {__version__}.")
if config.matplotlib_stylesheet != "default":
stylesheet_path = f"{config.config_directory}/{config.matplotlib_stylesheet}"
print_if_debug(f"Applying matplotlib stylesheet at {stylesheet_path}.")
style.use(stylesheet_path)
# Reverse so most recently modified is at the top.
auto_plotter_configs = list(config.auto_plotter_configs)
box_size_correction_directory = f"{config.config_directory}/box_size_corrections"
print_if_debug("Loading snapshot metadata")
snapshots = [
load_snapshot(f"{input}/{snapshot}")
for input, snapshot in zip(args.input, args.snapshots)
]
if args.run_names is not None:
run_names = args.run_names
print_if_debug("Using custom run names:")
print_if_debug(" ".join(run_names))
else:
# First, check if the snapshots are all at the same redshift
redshifts = {data.metadata.redshift for data in snapshots}
# If the size of the set is one, then all redshifts are the same
if len(redshifts) == 1:
# All redshifts are the same! No need to modify runs' names
run_names = [data.metadata.run_name for data in snapshots]
# If the size of the set > 1, then at least two runs have different redshifts
else:
# Need to append appropriate redshifts to names.
run_names = [
f"{data.metadata.run_name} (z={data.metadata.redshift:1.3f})"
for data in snapshots
]
print_if_debug("Using default run names from snapshot:")
print_if_debug(" ".join(run_names))
observational_data_path = (
f"{config.config_directory}/{config.observational_data_directory}/data"
)
if not is_comparison:
# Run the pipeline based on the arguments if only a single simulation is
# included and generate the metadata yaml file.
print_if_debug(
f"Generating initial AutoPlotter instance for {auto_plotter_configs}."
)
auto_plotter = AutoPlotter(
auto_plotter_configs,
observational_data_directory=observational_data_path,
correction_directory=box_size_correction_directory,
)
halo_catalogue_filename = f"{args.input[0]}/{args.catalogues[0]}"
print_if_debug(f"Loading halo catalogue at {halo_catalogue_filename}.")
registration_filename = [
f"{config.config_directory}/{file_path}"
for file_path in config.auto_plotter_registration
]
if registration_filename is not None:
print_if_debug(
f"Using registration functions contained in {registration_filename}"
)
# string pointing to the boolean array within the VelociraptorCatalogue object
# used to mask the data for all autoplotter plots
global_mask_tag = config.auto_plotter_global_mask
if global_mask_tag is not None:
print_if_debug(f"Masking all catalogue properties using {global_mask_tag}")
catalogue = load(
halo_catalogue_filename,
disregard_units=True,
registration_file_path=registration_filename,
)
if special_mode is not None:
special_mode.adapt_catalogue(catalogue)
print_if_debug(f"Linking catalogue and AutoPlotter instance.")
auto_plotter.link_catalogue(
catalogue=catalogue, global_mask_tag=global_mask_tag
)
print_if_debug(f"Creating figures with extension .png in {args.output}.")
print_if_debug("Converting AutoPlotter.plots to a tqdm instance.")
if args.debug:
auto_plotter.plots = tqdm(auto_plotter.plots, desc="Creating figures")
auto_plotter.create_plots(
directory=args.output,
file_extension=PLOT_FILE_EXTENSION,
debug=args.debug,
no_plots=args.no_plots,
)
print_if_debug("Creating AutoPlotterMetadata instance.")
auto_plotter_metadata = AutoPlotterMetadata(auto_plotter=auto_plotter)
metadata_filename = (
f"{args.input[0]}/{args.metadata}_{args.snapshots[0][-9:-5]}"
)
if special_mode is not None:
metadata_filename += f"_{special_mode.name}"
metadata_filename += ".yml"
print_if_debug(f"Creating and writing metadata to {metadata_filename}")
try:
auto_plotter_metadata.write_metadata(metadata_filename)
except (OSError, PermissionError) as e:
print_if_debug(f"Unable to save metadata to {metadata_filename}")
pass
else:
# Need to generate our data again from the built-in yaml files.
if special_mode is not None:
suffix = f"_{special_mode.name}.yml"
else:
suffix = ".yml"
metadata_filenames = [
f"{input}/{args.metadata}_{snapshot[-9:-5]}{suffix}"
for input, snapshot in zip(args.input, args.snapshots)
]
if args.debug:
for metadata_filename in metadata_filenames:
if not os.path.exists(metadata_filename):
print_if_debug(
f"Unable to find {metadata_filename}, ensure the pipeline has "
"been run in standalone mode for this simulation before "
"attempting comparisons."
)
print_if_debug(f"Attempting to recreate instances for {metadata_filenames}")
auto_plotter, auto_plotter_metadata, line_data = recreate_instances(
config=auto_plotter_configs,
paths=metadata_filenames,
names=run_names,
observational_data_directory=observational_data_path,
file_extension=PLOT_FILE_EXTENSION,
correction_directory=box_size_correction_directory,
)
if not os.path.exists(args.output):
os.mkdir(args.output)
print_if_debug("Converting AutoPlotter.plots to a tqdm instance.")
if args.debug:
auto_plotter.plots = tqdm(auto_plotter.plots, desc="Creating figures")
for plot in auto_plotter.plots:
try:
recreate_single_figure(
plot=plot,
line_data=line_data,
output_directory=args.output,
file_type=PLOT_FILE_EXTENSION,
)
except:
print_if_debug(f"Unable to create figure {plot.filename}.")
# Now that we have auto_plotter_metadata we can use it to check if we have
# inadvertently created multiple plots with the same filename.
if args.debug:
figure_filenames = {plot.filename: 0 for plot in auto_plotter_metadata.plots}
for plot in auto_plotter_metadata.plots:
figure_filenames[plot.filename] += 1
for filename, number_of_figures in figure_filenames.items():
if number_of_figures > 1:
print_if_debug(
f"{number_of_figures} figures with filename "
f"{filename}.{PLOT_FILE_EXTENSION} have been created. "
"This will cause overwriting, and may not be intentional."
)
# Now move onto using the ``config`` to generate plots from the actual data.
scripts_to_use = config.comparison_scripts if is_comparison else config.scripts
full_script_path_list = [
f"{config.config_directory}/{script.filename}" for script in scripts_to_use
]
script_additional_args_list = [
script.additional_argument_list for script in scripts_to_use
]
def script_run(script_path: str, script_args: List[Any]) -> Tuple[str, float]:
"""
A function through which scripts can be run in parallel using the p_map method
from p_tqdm library.
Parameters
----------
script_path: str
Absolute path to the script executable including the file name
script_args: List[Any]
Optional arguments to the script
Returns
-------
output: Tuple[str, float]
A tuple containing the script (file) name and the time it took to
run the script.
"""
time_start = time()
run(
[
"python3",
script_path,
"-s",
*args.snapshots,
"-c",
*args.catalogues,
"-d",
*args.input,
"-n",
*run_names,
"-o",
args.output,
"-C",
config.config_directory,
*script_args,
]
)
time_end = time()
# Record the time difference before and after the call of subprocess.run
script_runtime = time_end - time_start
try:
script_name = script_path.split("/")[-1]
except (AttributeError, TypeError):
script_name = "Other calls"
return (script_name, script_runtime)
if args.fast:
print("Fast mode, not running scripts.")
else:
# Time the call of p_map to measure total wall clock time
time_start = time()
if args.num_of_cpus is not None:
print_if_debug(
f"Running scripts in parallel using {args.num_of_cpus} CPUs."
)
script_runs_out = p_map(
script_run,
full_script_path_list,
script_additional_args_list,
num_cpus=args.num_of_cpus,
desc="Running Scripts",
)
else:
print_if_debug(
f"Running scripts in parallel on the maximum number of CPUs "
f"avaliable."
)
script_runs_out = p_map(
script_run,
full_script_path_list,
script_additional_args_list,
desc="Running Scripts",
)
# Finish calculating wall clock time
time_end = time()
# Print out script runtime statistics
if args.debug:
# Record wall clock time used to execute all scripts
wall_clock_time = time_end - time_start
# Create dict for recording CPU time spent while running scripts
script_runtimes = {}
# Convert list of tuples to dict
for (name, time) in script_runs_out:
script_runtimes[name] = time
# Add wallclock time
script_runtimes["Wallclock time"] = wall_clock_time
# Print out runtime scatistics
print_script_runtime_statistics(script_runtimes=script_runtimes)
if not args.no_plots:
# Create the webpage`
print_if_debug("Creating webpage.")
warnings = []
if args.fast:
warnings.append(
f"Running in fast mode: only autoplotter plots are included."
)
if special_mode is not None:
warnings.append(f"Running in special mode {special_mode.name}.")
webpage = WebpageCreator(warnings)
webpage.add_auto_plotter_metadata(auto_plotter_metadata=auto_plotter_metadata)
if not args.fast:
webpage.add_config_metadata(config=config, is_comparison=is_comparison)
page_name = " | ".join(run_names)
if args.fast:
page_name = f"FAST mode - {page_name}"
if special_mode is not None:
page_name = f"SPECIAL {special_mode.name} - {page_name}"
webpage.add_metadata(page_name=page_name)
webpage.add_run_metadata(config=config, snapshots=snapshots)
webpage.render_webpage()
webpage.save_html(f"{args.output}/index.html")
print_if_debug("Done.")