-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenres_ul_functions.py
197 lines (161 loc) · 7.59 KB
/
genres_ul_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.metrics import silhouette_score
# my import functions
import constants as const
import plot_function
def load_data(data_path):
# read file and drop unnecessary column
raw_dataset = pd.read_csv(data_path)
print("\nRaw Dataset Keys:\n\033[92m{}\033[0m".format(raw_dataset.keys()))
df = raw_dataset.drop(["filename"], axis=1)
print("\nData Shape: \033[92m{}\033[0m".format(df.shape))
# encode genre label as integer values
# i.e.: blues = 0, ..., rock = 9
encoder = preprocessing.OrdinalEncoder()
df["genre"] = encoder.fit_transform(df[["genre"]])
# split df into x and y
label_column = "genre"
X = df.loc[:, df.columns != label_column]
y = df.loc[:, label_column]
# Scaling
X_columns = X.columns
resized_data = preprocessing.MinMaxScaler()
np_scaled = resized_data.fit_transform(X)
X = pd.DataFrame(np_scaled, columns=X_columns)
y = pd.DataFrame(y).fillna(0).astype(int)
return X, y, df
def number_of_components(input_data, variance_ratio, show_on_screen=True, store_in_folder=True):
# PCA
pca = PCA()
pca.fit(input_data)
# explained_variance
evr = pca.explained_variance_ratio_
cumulative_evr = np.cumsum(evr)
n_components = 0
for i, ratio in enumerate(cumulative_evr):
if ratio >= variance_ratio:
n_components = i + 1
break
print("\nExplained Variance Ratio for:")
for i, value in enumerate(pca.explained_variance_ratio_):
if i <= n_components - 1:
print("PC{}: \033[92m{}%\033[0m".format(i + 1, round(value * 100, 2)))
# Plot
plot_function.plot_pca_opt_num_of_components(input_data=input_data, cumulative_evr=cumulative_evr,
show_on_screen=show_on_screen, store_in_folder=store_in_folder)
return n_components
def get_kmeans_model(input_data):
# K-means model
kmeans_model = KMeans(n_clusters=10, init="k-means++", n_init="auto", random_state=42).fit(input_data)
# labels
kmeans_labels = kmeans_model.labels_
# centers
kmeans_centers = kmeans_model.cluster_centers_
return kmeans_model, kmeans_labels, kmeans_centers
def get_pca_centroids(input_data, input_columns, n_components, centroids):
column_components = []
for column in range(n_components):
column_components.append("PC" + str(column + 1))
# get PCA components
pca = PCA(n_components=n_components)
pca_fit = pca.fit(input_data)
principal_components = pca_fit.transform(input_data)
# dataframe
df = pd.DataFrame(data=principal_components, columns=column_components)
# concatenate with target label
pca_data = pd.concat([df.reset_index(drop=True), input_columns.reset_index(drop=True)], axis=1)
# transform cluster centroids
pca_centroids = pca_fit.transform(centroids)
return pca_data, pca_centroids
def silhouette_analysis_for_kmeans_clustering(input_data, min_num_k, max_num_k):
# list of silhouette values
silhouette_score_values = list()
# range of k
number_of_clusters = range(min_num_k, max_num_k + 1)
# Compute k-Means with different k
for k in number_of_clusters:
clusters = KMeans(n_clusters=k, n_init="auto")
clusters.fit(input_data)
cluster_labels = clusters.predict(input_data)
# append score values in the list
silhouette_score_values.append(silhouette_score(input_data, cluster_labels,
metric="euclidean",
sample_size=None,
random_state=None))
# plot function
plot_function.plot_silhouette(silhouette_score_values=silhouette_score_values,
number_of_clusters=number_of_clusters,
min_num_k=const.MIN_NUM_CLUSTERS,
max_num_k=const.MAX_NUM_CLUSTERS,
show_on_screen=True,
store_in_folder=True)
def k_means_clustering(input_data, input_columns, dataframe, show_cluster, show_confusion_matrix, show_roc_curve,
show_silhouette):
# Number of components
num_components = number_of_components(input_data=input_data,
variance_ratio=const.VARIANCE_RATIO,
show_on_screen=True,
store_in_folder=True)
# My K-Means model getting labels and centers
kmeans_model, labels, centers = get_kmeans_model(input_data)
# Get PCA and Centroids
pca, centroids = get_pca_centroids(input_data=input_data.values,
input_columns=input_columns,
n_components=num_components,
centroids=centers)
if show_cluster:
# Plot clusters
plot_function.plot_clusters(input_pca_data=pca[["PC1", "PC2", "genre"]],
centroids=centroids,
labels=labels,
colors_list=const.COLORS_LIST,
genres_list=const.GENRES_LIST,
show_on_screen=True,
store_in_folder=True)
if show_confusion_matrix:
# plot confusion matrix
plot_function.plot_kmeans_confusion_matrix(data=dataframe,
labels=labels,
genre_list=const.GENRES_LIST,
show_on_screen=True,
store_in_folder=True)
if show_roc_curve:
# plot roc curve
plot_function.plot_roc(y_test=input_columns.values,
y_score=labels,
operation_name="K-Means",
genres_list=const.GENRES_LIST,
type_of_learning="UL",
show_on_screen=True,
store_in_folder=True)
if show_silhouette:
# Compute and plot silhouette analysis on K-Means clustering
silhouette_analysis_for_kmeans_clustering(input_data=input_data,
min_num_k=const.MIN_NUM_CLUSTERS,
max_num_k=const.MAX_NUM_CLUSTERS)
def clustering_and_evaluation(data_path):
# load normalized data
X, y, df = load_data(data_path)
print("\nData:\n\033[92m{}\033[0m".format(df))
print("\nX (extracted features):\n\033[92m{}\033[0m".format(X))
print("\ny (genre label):\n\033[92m{}\033[0m".format(y))
# Plot correlation matrix
plot_function.plot_correlation_matrix(input_data=X,
show_on_screen=True,
store_in_folder=False)
# k-means model and evaluation
k_means_clustering(input_data=X,
input_columns=y,
dataframe=df,
show_cluster=True,
show_confusion_matrix=True,
show_roc_curve=True,
show_silhouette=True)
# # used for testing
# if __name__ == '__main__':
# # clustering
# clustering_and_evaluation(data_path=const.DATA_PATH)