-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetector.py
96 lines (72 loc) · 3.04 KB
/
Detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 11 12:59:39 2022
"""
import cv2 as cv
import json
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.utils.visualizer import ColorMode
from detectron2 import model_zoo
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets import register_coco_instances
from detectron2.modeling import build_model
import torch
import numpy as np
from PIL import Image
import time
class Detector:
def __init__(self):
# set model and test set
self.model = 'mask_rcnn_R_50_FPN_3x.yaml'
# obtain detectron2's default config
self.cfg = get_cfg()
# load values from a file
# self.cfg.merge_from_file("test.yaml")
self.cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/"+self.model))
# set device to cpu
#self.cfg.MODEL.DEVICE = "cuda"
self.cfg.MODEL.DEVICE = "cpu"
# get weights
# self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/"+self.model)
self.cfg.MODEL.WEIGHTS = "/home/iovision/return_img/model_final.pth"
#self.cfg.MODEL.WEIGHTS = "/home/appuser/return_img_repo/model_final.pth"
# set the testing threshold for this model
self.cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7
#self.cfg.DATASETS.TEST = ("fold1")
# build model from weights
# self.cfg.MODEL.WEIGHTS = self.convert_model_for_inference()
self.cfg.MODEL.ROI_HEADS.NUM_CLASSES = 5
self.predictor = DefaultPredictor(self.cfg)
# build model and convert for inference
def convert_model_for_inference(self):
# build model
model = build_model(self.cfg)
# save as checkpoint
torch.save(model.state_dict(), 'checkpoint.pth')
# return path to inference model
return 'checkpoint.pth'
# detectron model
# adapted from detectron2 colab notebook: https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
def inference(self, file):
start= time.time()
im = cv.imread(file)
outputs = self.predictor(im)
# with open(self.curr_dir+'/data.txt', 'w') as fp:
# json.dump(outputs['instances'], fp)
# # json.dump(cfg.dump(), fp)
# get metadata
MetadataCatalog.get("mydataset").thing_classes = ['short_sleeved_shirt', 'long_sleeved_shirt', 'long_sleeved_outwear', 'shorts', 'trousers']
# visualise
v = Visualizer(im[:, :, ::-1], metadata=MetadataCatalog.get("mydataset"), scale=1.2)
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# get image
img1 = cv.cvtColor(v.get_image()[:, :, ::-1], cv.COLOR_BGR2RGB)
img = Image.fromarray(np.uint8(img1))
end = time.time()
a= end - start
# write to jpg
# cv.imwrite('img.jpg',v.get_image())
return img, a