-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNaturalityOp.agda
63 lines (50 loc) · 2.79 KB
/
NaturalityOp.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
{-# OPTIONS --rewriting #-}
module NaturalityOp where
open import TypeSystem
open import Graph.Target
import Graph.Span as GraphSpan
record IsFunctor {a b} (F : Set a → Set b) : Set (lsuc (a ⊔ b)) where
constructor con
field
map : ∀ {A B :{#} Set a} → (B → A) → F A → F B
map-id : ∀ {A :{#} Set a} {x} → map (\ (x : A) → x) x ≡ x
map-∘ : ∀ {A B C :{#} Set a} → (f : C → B) → (g : B → A) → ∀ {x} → map f (map g x) ≡ map (g ∘ f) x
map : ∀ {a b} {F :{#} Set a → Set b} → ([F] : IsFunctor F) → ∀ {A B :{#} Set a} → (B → A) → F A → F B
map (con x _ _) = x
map-id : ∀ {a b} {F :{#} Set a → Set b} → ([F] : IsFunctor F) → ∀ {A :{#} Set a} {x} → map [F] (\ (x : A) → x) x ≡ x
map-id (con _ x _) = x
map-∘ : ∀ {a b} {F :{#} Set a → Set b} → ([F] : IsFunctor F) → ∀ {A B C :{#} Set a} → (f : C → B) → (g : B → A)
→ ∀ {x} → map [F] f (map [F] g x) ≡ map [F] (g ∘ f) x
map-∘ (con x _ y) = y
module Proof¶ {a}{b} (F G :{#} Set a → Set b) ([F] : IsFunctor F) ([G] : IsFunctor G)
(eta : ∀ (A :{#} Set a) → F A → G A)
(A B :{#} Set a) (f :{¶} B → A) where
/f/ :{#} 𝕀 → Set a
/f/ = / f /
eta-nat : ∀ x → (map [G] f ∘ eta A) x ≡ (eta B ∘ map [F] f) x
eta-nat x = sym (trans (sym (map-id [G]))
(trans (path-to-eq (\ i → map [G] (push f i) (eta (/f/ i) (map [F] (pull f i) x))))
(cong (map [G] f ∘ eta A) (map-id [F]))))
module ProofId {a} {b} (F G :{#} Set a → Set b) ([F] : IsFunctor F) ([G] : IsFunctor G)
(eta : ∀ (A :{#} Set a) → F A → G A)
{A B :{#} Set a} (f : B → A) where
open GraphSpan f
module Src = Proof¶ F G [F] [G] eta B T src
module Tgt = Proof¶ F G [F] [G] eta A T tgt
eta-nat : ∀ x → (map [G] f ∘ eta A) x ≡ (eta B ∘ map [F] f) x
eta-nat x = trans (sym (map-∘ [G] inv tgt))
(trans (cong (map [G] inv) (Tgt.eta-nat x)) (trans (sym (z (map [F] tgt x))) (cong (eta B) (map-∘ [F] inv tgt))))
where
q : ∀ z → map [G] inv ((map [G] src ∘ eta B) (map [F] inv z)) ≡
map [G] inv ((eta T ∘ map [F] src) (map [F] inv z))
q z = cong ((map [G] inv)) (Src.eta-nat (map [F] inv z) )
z : ∀ x → eta B (map [F] inv x) ≡ (map [G] inv ∘ eta T) x
z x = trans ( (trans (trans
(sym (map-id [G]))
(cong (let H = _ in λ f₁ → map [G] f₁ H) (sym (funext src-inv)))
)
(sym (map-∘ [G] inv src))) )
(trans (q x)
( (cong (map [G] inv ∘ eta T)
(trans (map-∘ [F] src inv)
(trans ((cong (let H = _ in λ f₁ → map [F] f₁ H) ((funext inv-src)))) (map-id [F]) ))) ))