-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSizeCoAlgebras.agda
154 lines (115 loc) · 8.24 KB
/
SizeCoAlgebras.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
{-# OPTIONS --rewriting #-}
module SizeCoAlgebras where
open import EquivalenceReasoning
open import Primitives
open import TypeSystem
open import ParamSize
map∀i : ∀ {a b} → {A :{ # } Size → Set a} → {B :{ # } Size → Set b} → (∀i \ i → A i → B i) → ∀i A → ∀i B
map∀i f g i = f i (g i)
map∀i-∘ : ∀ {a b c}{A :{ # } Size → Set a}{B :{ # } Size → Set b}{C :{ # } Size → Set c}
→ {f : ∀i \ i → B i → C i} → {g : ∀i \ i → A i → B i} →
∀ x → map∀i f (map∀i g x) ≡ map∀i (\ i x → f i (g i x)) x
map∀i-∘ = \ _ → refl _
map∀i-id : ∀ {a}{A :{ # } Size → Set a} → ∀ x → map∀i {a} {a} {A} {A} (\ i x → x) x ≡ x
map∀i-id = \ _ → refl _
module Final (X :{ # } Set) (F :{ # } (X -> Set) -> (X -> Set))
(mapF : {A B :{ # } X → Set} → (∀ x → A x → B x) → ∀ x → F A x → F B x)
(mapF-∘ : {A B C :{ # } X → Set} →
{f : ∀ x → A x → B x}{g : ∀ x → B x → C x} →
∀ x a → mapF g x (mapF f x a) ≡ mapF (\ x a → g x (f x a)) x a)
where
■ : (Size → X → Set) → Size → X → Set
■ A i x = ∀i \ j → j < i → A j x
guard : ∀ {A :{ # } Size → Set} → ∀i A → ∀i \ i → ∀i \ j → j < i → A j
guard f i j _ = f j
_⇛_ :{ # } (A B : Size → X → Set) → Set
A ⇛ B = ∀i \ i → ∀ (x : X) → A i x → B i x
map■ : h#Π _ \ A → h#Π _ \ B → (A ⇛ B) → ■ A ⇛ ■ B
map■ f i x a j j< = f j x (a j j<)
_[■_] : ((X -> Set) -> (X -> Set)) → (Size → X → Set) → (Size → X → Set)
(F [■ A ]) i x = F (\ y → ■ A i y) x
map[■ : ∀ {A B} → (A ⇛ B) → (F [■ A ]) ⇛ (F [■ B ])
map[■ f i x = mapF (\ x → map■ f i x) x
typecan :{ # } Set₁
typecan = ∀ {A :{ # } _} → ∀ x → F (\ x' → ∀i \ i → A i x') x
→ (∀i \ i → (F [■ A ]) i x)
can : typecan
can {A} x y i = mapF (\ _ y → guard y i) x y
unique-fix : ∀ {A : Size → Set} f → ∀ {u} → (u ≡ \ i → f i (\ j _ → u j)) → u ≡ fix A f
unique-fix {A} f {u} p = funext (fix _ (λ i x → trans (trans (TypeSystem.cong (λ f₁ → f₁ i) p)
(TypeSystem.cong (f i) (funext (λ a → funext \ a< → x a a<))))
(TypeSystem.sym (fix-unfold A f i))))
#unique-fix : ∀ {A :{ # } Size → Set} f → ∀ {u : #Π Size A} → (u ≡ ( \ i → f i (\ j _ → u j) )) → u ≡ #fix A f
#unique-fix f p = #funext (#fix _ (λ i x → trans (trans (TypeSystem.cong (λ f₁ → f₁ i) p)
(TypeSystem.cong (f i) (#funext (λ a → funext \ a< → x a a<))))
(TypeSystem.sym (#fix-unfold _ f i))))
ν̂ :{ # } (Size → X → Set)
ν̂ = (fix _ (λ i A → F (λ y → ∀i (λ j → ∀ j<i → A j j<i y))))
inn̂ : (F [■ ν̂ ]) ⇛ ν̂
inn̂ i x = subst (\ f → f x) (sym (fix-unfold _ (λ i A → F (λ y → ∀i (λ j → ∀ j<i → A j j<i y))) i))
out̂ : ν̂ ⇛ (F [■ ν̂ ])
out̂ i x = subst (\ f → f x) (fix-unfold _ (λ i A → F λ y → ∀i λ j → ∀ j<i → A j j<i y) i)
betâ : h#Π Size \ i → ∀ {x fm} → out̂ i x (inn̂ i x fm) ≡ fm
betâ {i} = subst-sym ((fix-unfold _ (λ i A → F (λ y → ∀i (λ j → ∀ j<i → A j j<i y))) i)) where
subst-sym : ∀ {a} {p} → {A :{ # } Set a} → {P :{ # } A → Set p}
→ {x y :{ # } A} → (eq : x ≡ y) {m : _} → subst P eq (subst P (sym eq) m) ≡ m
subst-sym {P = P} eq {m} = J eq (\ y eq → (m : _) → subst P eq (subst P (sym eq) m) ≡ m ) refl m
etâ : h#Π Size \ i → ∀ {x fm} → inn̂ i x (out̂ i x fm) ≡ fm
etâ {i} = subst-sym (((fix-unfold _ (λ i A → F (λ y → ∀i (λ j → ∀ j<i → A j j<i y))) i)))
where
subst-sym : ∀ {a} {p} → {A :{ # } Set a} → {P :{ # } A → Set p}
→ {x y :{ # } A} → (eq : x ≡ y) {m : _} → subst P (sym eq) (subst P eq m) ≡ m
subst-sym {P = P} eq {m} = J eq (\ y eq → (m : _) → subst P (sym eq) (subst P eq m) ≡ m ) refl m
mutual
unfoldR : ∀ {A :{ # } _} → A ⇛ (F [■ A ]) → #Π Size \ i → _
unfoldR {A} φ = (λ i unfold' x m → mapF (\ x → map∀i (\ j → \ m j<i → unfold' j j<i x (m j<i))) x (φ i x m))
unfoldF : ∀ {A :{ # } _} → A ⇛ (F [■ A ]) → #Π Size \ i → _
unfoldF {A} = \ φ → (λ i unfold' x m → inn̂ i x (unfoldR φ i unfold' x m) )
unfold̂ : ∀ {A :{ # } _} → A ⇛ (F [■ A ]) → A ⇛ ν̂
unfold̂ {A} φ = #fix _ (unfoldF {A} φ)
unfold̂-mor : ∀ {A} → (φ : A ⇛ (F [■ A ])) → #Π Size \ i → ∀ x fm →
out̂ i x (unfold̂ φ i x fm) ≡ (map[■ (unfold̂ φ) i x (φ i x fm))
unfold̂-mor φ i x fm = trans ((cong (λ f → (out̂ i x (f x fm))) (#fix-unfold _ (unfoldF φ) i)))
betâ
unfold̂-mor2 : ∀ {A} → (φ : A ⇛ (F [■ A ])) → #Π Size \ i → ∀ x fm →
(unfold̂ φ i x fm) ≡ inn̂ i x (map[■ (unfold̂ φ) i x (φ i x fm))
unfold̂-mor2 φ i x fm = trans (sym etâ) (cong (inn̂ i x) (unfold̂-mor φ i x fm))
uniquê : ∀ {A} → (φ : A ⇛ (F [■ A ])) → (h : A ⇛ ν̂ ) →
(#Π Size \ i → ∀ x m → map[■ h i x (φ i x m) ≡ out̂ i x (h i x m))
→ #Π Size \ i → ∀ x m → h i x m ≡ unfold̂ φ i x m
uniquê φ h [h] i x m = cong (λ g → g i x m) (#unique-fix
(unfoldF φ)
{u = h} ( (sym (#funext (λ i → funext (λ x → funext \ m → trans (cong (inn̂ i x) ([h] i x m)) etâ )))) ))
ν :{ # } X → Set
ν x = ∀i \ i → ν̂ i x
module F-commutes (comm : ∀ {A :{ # } _} x → is-equiv (can {A} x)) where
inn : ∀ x → F ν x → ν x
inn x ts = map∀i (\ i → inn̂ i x) (can x ts)
out : ∀ x → ν x → F ν x
out x m = #≅.inv ([ _ , comm x ]) (map∀i (λ i → out̂ i x) m)
beta : ∀ x m → (out x (inn x m)) ≡ m
beta x m = trans (cong (#≅.inv ([ _ , comm x ])) (#funext (\ i → betâ))) (#≅.invcoe (([ _ , comm x ])))
eta : ∀ x m → (inn x (out x m)) ≡ m
eta x m = trans (cong (map∀i (λ i → inn̂ i x))
(#≅.coeinv' ([ _ , comm x ]) ((map∀i (λ i → out̂ i x) m))))
(#funext (\ x → etâ))
unfold : ∀ {A :{ # } _} → (∀ x → A x → F A x) → ∀ x → A x → ν x
unfold {A} φ x a i = unfold̂ (λ { i x fm → mapF (\ _ a → guard (\ _ → a) i) x (φ x fm) })
i x a
unfold-mor : ∀ {A} → (φ : ∀ ix → A ix → F A ix)
→ ∀ ix m → out ix (unfold φ ix m) ≡ mapF (unfold φ) ix (φ ix m)
unfold-mor φ ix a = trans (cong (#≅.inv ([ _ , comm ix ])) (trans (#funext (\ i → unfold̂-mor _ _ _ _))
(#funext (\ x → trans (mapF-∘ {f = λ z a₁ → guard (λ _ → a₁) x} {g = _} ix (φ ix a))
(sym (mapF-∘ {f = _} {g = \ _ y → guard y x} ix (φ ix a)))))))
((#≅.invcoe ([ _ , comm ix ])))
unfold-mor' : ∀ {A} → (φ : ∀ ix → A ix → F A ix)
→ ∀ ix m → (unfold φ ix m) ≡ inn ix (mapF (unfold φ) ix (φ ix m))
unfold-mor' φ ix m = trans (sym (eta ix (unfold φ ix m))) (cong (inn ix) (unfold-mor φ ix m))
unique' : ∀ {A} → (φ : ∀ x → A x → F A x) → (h : ∀ x → A x → ν x) →
(∀ x m → inn x (mapF h x (φ x m)) ≡ h x m) → ∀ x m → h x m ≡ unfold φ x m
unique' φ h [h] x a = #funext (λ i → uniquê _ (λ x₁ x₂ x₃ → h x₂ x₃ x₁) (λ x₁ x₂ m →
trans (trans (mapF-∘ x₂ (φ x₂ m)) (trans (sym (mapF-∘ _ _)) (sym betâ)))
(cong (\ f → out̂ _ _ (f x₁)) ([h] x₂ m))) i x a)
unique : ∀ {A} → (φ : ∀ x → A x → F A x) → (h : ∀ x → A x → ν x) →
(∀ x m → (mapF h x (φ x m)) ≡ out x (h x m)) → ∀ x m → h x m ≡ unfold φ x m
unique φ h [h] = unique' _ h (λ x m → trans (cong (inn x) ([h] x m)) (eta x _))