-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmain.py
83 lines (75 loc) · 3.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from dataset import customized_dataset
from model import FaceNet
from sampler import samples
from train import train, load
from test import evalulate, test
from util import get_Optimizer, get_Scheduler, get_Sampler
import torch
import pandas as pd
from torch.utils.data import DataLoader
import multiprocessing
if __name__ == "__main__":
#######################################################################################
#########################################config#######################################
BATCH_SIZE=256
#NUM_WORKERS = multiprocessing.cpu_count()
NUM_WORKERS = multiprocessing.cpu_count()
embedding_size = 512
# all or None(may not iterate all data in each batch)
sampler = None
weight_decay = 5e-4
lr = 5e-2
dropout = 0.3
# resnet, effnet or None(IncepetionResNet)
model_name = None
pretrain = True
# 'arcface' or 'triplet'
loss_fn = 'triplet'
# global gem or None(avgerage pooling)
pool= None
# Cyclic or Step
scheduler_name = 'multistep'
# sgd or None(adam) or rmsprop
optimizer_type = 'adadelta'
num_epochs = 100
eval_every = 50
# margin for triplet loss
margin=3
# name to open or save the model
name = 'triplet.pth'
#######################################################################################
#######################################################################################
# device: cpu or cuda
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
print("Device:",device)
# read scv
df_train = pd.read_csv('train.csv')
df_eval1 = pd.read_csv('eval_same.csv')
df_eval2 = pd.read_csv('eval_diff.csv')
df_test = pd.read_csv('test.csv')
# label_to_samples
print('Initializing sampler...')
label_to_samples = samples(df_train)
# dataset, sampler and dataloader
train_dataset = customized_dataset(df_train, mode='train', label_to_samples=label_to_samples)
eval_dataset1 = customized_dataset(df_eval1, mode='eval')
eval_dataset2 = customized_dataset(df_eval2, mode='eval')
test_dataset = customized_dataset(df_test, mode='test')
train_sampler = get_Sampler(sampler, train_dataset, p=20, k=30)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, drop_last=False, sampler=train_sampler)
eval_loader1 = DataLoader(eval_dataset1, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, drop_last=False)
eval_loader2 = DataLoader(eval_dataset2, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, drop_last=False)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS, drop_last=False)
# model, optimizer, scheduler
facenet = FaceNet(model_name=model_name, pool=pool, embedding_size=embedding_size, dropout=dropout, device=device, pretrain=pretrain)
#facenet = torch.nn.DataParallel(facenet, device_ids=[0,1,2,3]) # multi-GPU training, here shows four cuda
optimizer = get_Optimizer(facenet, optimizer_type, lr, weight_decay) # optimizer
scheduler = get_Scheduler(optimizer, lr, scheduler_name) # scheduler
# load previous trained model
if False:
facenet, optimizer, scheduler = load('./models/'+name)
# train
train(facenet.to(device),train_loader,eval_loader1,eval_loader2,optimizer,scheduler,num_epochs,eval_every,margin,device,name)
dist_threshold = evalulate(facenet, eval_loader1, eval_loader2, device, loss_fn)
print('Distance threshold:',dist_threshold)
test(facenet,test_loader,dist_threshold,device, loss_fn)