-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathnn_rollback.py
190 lines (160 loc) · 6.75 KB
/
nn_rollback.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on Jul 10, 2014
Unit, whick returns workflow to the saved state, if Model starts to diverge.
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
import numpy
from zope.interface import implementer
from veles.units import IUnit, Unit
from veles.distributable import IDistributable
@implementer(IUnit, IDistributable)
class NNRollback(Unit):
"""
Unit, whick returns workflow to the save state, if Model starts to diverge.
"""
weights_names = (
"weights", "bias", "gradient_weights", "gradient_bias")
def __init__(self, workflow, **kwargs):
super(NNRollback, self).__init__(workflow, **kwargs)
self.lr_plus = kwargs.get("lr_plus", 1.04)
self.lr_minus = kwargs.get("lr_minus", 0.65)
self.plus_steps = kwargs.get("plus_steps", 1)
self.minus_steps = kwargs.get("minus_steps", 3)
self._plus_steps = self.plus_steps
self._minus_steps = self.minus_steps
self.improved = None
self.demand("improved")
self._gds = {}
self.history_limit = 2
# Workaround for difference in minibatch class serve order
# in clear run and after the resuming from the snapshot.
self._first_run = True
def init_unpickled(self):
super(NNRollback, self).init_unpickled()
self.slaves = {}
def initialize(self, **kwargs):
self.info("lr_plus=%.2f lr_minus=%.2f", self.lr_plus, self.lr_minus)
def generate_data_for_slave(self, slave):
self.slaves[slave.id] = 1
def generate_data_for_master(self):
return True
def apply_data_from_master(self, data):
pass
def apply_data_from_slave(self, data, slave):
self._slave_ended(slave)
def _slave_ended(self, slave):
if slave.id in self.slaves:
del self.slaves[slave.id]
if (not len(self.slaves) and not bool(self.gate_skip)
and not bool(self.gate_block)):
self.run()
def drop_slave(self, slave):
self._slave_ended(slave)
def get_weights(self, gd, name, value):
weights = getattr(gd, name)
weights.map_read()
ww = value.get(name, [])
ww.append(weights.mem.copy())
while len(ww) > self.history_limit:
ww.pop(0)
return ww
def calculate_nans(self, gd, name):
weights = getattr(gd, name)
if weights:
weights.map_read()
return numpy.count_nonzero(numpy.isnan(weights.mem))
else:
return 0
def rollback_weights(self, gd, name, value, rollback_to):
weights = getattr(gd, name)
ww = value.get(name)
if ww is None:
self.warning("No rollback for %s" % name)
else:
self.info("Rolling back to stored weights")
weights.map_invalidate()
weights_to_return = ww[rollback_to]
if rollback_to >= 0:
del ww[rollback_to + 1:]
return weights_to_return
def run(self):
if self.improved:
self._plus_steps += 1
if self._plus_steps < self.plus_steps:
return
self._plus_steps = 0
self._minus_steps = 0
for _gd, kv in self._gds.items():
k = kv["lr_plus"]
if k is None:
k = self.lr_plus
_gd.learning_rate *= k
_gd.learning_rate_bias *= k
self.info("Increased lr of %s by %.2f, new_lr %.2e",
repr(_gd), k, _gd.learning_rate)
for weights_name in self.weights_names:
if getattr(_gd, weights_name, None):
kv[weights_name] = self.get_weights(
_gd, weights_name, kv)
elif not self._first_run:
rollback_to = 0 # -1
# Check for NaNs
for _gd, kv in self._gds.items():
nz = 0
for weights_name in self.weights_names:
nz += self.calculate_nans(_gd, weights_name)
if nz:
self.warning("NaNs encountered, will rollback to -%d",
self.history_limit)
self._minus_steps = self.minus_steps
rollback_to = 0
break
self._minus_steps += 1
if self._minus_steps < self.minus_steps:
return
self._minus_steps = 0
self._plus_steps = 0
for _gd, kv in self._gds.items():
k = kv["lr_minus"]
if k is None:
k = self.lr_minus
_gd.learning_rate *= k
_gd.learning_rate_bias *= k
self.info("Decreased lr of %s by %.2f, new_lr %.2e",
repr(_gd), k, _gd.learning_rate)
for weights_name in self.weights_names:
if getattr(_gd, weights_name, None):
setattr(_gd, "%s.mem[:]" % weights_name,
self.rollback_weights(
_gd, weights_name, kv, rollback_to))
self._first_run = False
def reset(self):
self._gds.clear()
def add_gd(self, _gd, lr_plus=None, lr_minus=None):
kv = self._gds.get(_gd, {})
kv["lr_plus"] = lr_plus
kv["lr_minus"] = lr_minus
self._gds[_gd] = kv