-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathpooling.py
548 lines (420 loc) · 16.8 KB
/
pooling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on Dec 3, 2013.
==============
Pooling layers
==============
A short description of `pooling` (aka `subsampling`) can be found `here \
<http://white.stanford.edu/teach/index.php/\
An_Introduction_to_Convolutional_Neural_Networks#Subsampling>`_.
Pooling types implemented:
- `AvgPooling`: averaging pooling
- `MaxPooling`: maximum selection pooling
- `StochasticPooling`: stochastic pooling, described in article `"Stochastic \
Pooling for Regularization of Deep Convolutional Neural Networks" \
<http://www.matthewzeiler.com/pubs/iclr2013/iclr2013.pdf>`_.
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
from __future__ import division
from itertools import product
import logging
import numpy
import time
from zope.interface import implementer
from veles.memory import Array
from veles.accelerated_units import IOpenCLUnit, ICUDAUnit, INumpyUnit
import veles.znicz.nn_units as nn_units
from veles.distributable import IDistributable, TriviallyDistributable
from veles.prng.uniform import Uniform
from veles.units import Unit
class PoolingBase(Unit):
POOL_ATTRS = ("kx", "ky", "sliding")
hide_from_registry = True
def __init__(self, workflow, **kwargs):
super(PoolingBase, self).__init__(workflow, **kwargs)
self._out_sxy = tuple()
@property
def output_shape(self):
return self.input_batch_size, self.out_sy, self.out_sx, \
self.n_channels
@property
def output_size(self):
return int(numpy.prod(self.output_shape))
@property
def input_batch_size(self):
return self.input.shape[0]
@property
def sy(self):
return self.input.shape[1]
@property
def sx(self):
return self.input.shape[2]
@property
def out_sxy(self):
if self._out_sxy == tuple():
outs = [0, 0]
for i, last in enumerate((self.sx - self.kx, self.sy - self.ky)):
outs[i] = last // self.sliding[i] + 1
if last % self.sliding[i] != 0:
outs[i] += 1
self._out_sxy = tuple(outs)
return self._out_sxy
@property
def out_sx(self):
return self.out_sxy[0]
@property
def out_sy(self):
return self.out_sxy[1]
@property
def n_channels(self):
return self.input.size // (self.input_batch_size * self.sx * self.sy)
@implementer(IOpenCLUnit, ICUDAUnit, INumpyUnit, IDistributable)
class Pooling(PoolingBase, nn_units.Forward, TriviallyDistributable):
"""Pooling forward propagation.
Must be assigned before initialize():
input
Updates after run():
output
Creates within initialize():
output
Attributes:
input: input as batch of multichannel interleaved images.
output: output as batch of multichannel interleaved images.
kx: pooling kernel width.
ky: pooling kernel height.
sliding: tuple of kernel sliding (by x-axis, by y-axis).
"""
MAPPING = set()
def __init__(self, workflow, **kwargs):
super(Pooling, self).__init__(workflow, **kwargs)
self.kx = kwargs["kx"]
self.ky = kwargs["ky"]
self.sliding = kwargs.get("sliding") or (self.kx, self.ky)
self.exports.extend(self.POOL_ATTRS)
self._no_output = False
def init_unpickled(self):
super(Pooling, self).init_unpickled()
self.sources_["pooling"] = {}
if not hasattr(self, "_no_output"):
self._no_output = False
if not hasattr(self, "uniform"):
self.uniform = None
def initialize(self, device, **kwargs):
super(Pooling, self).initialize(device=device, **kwargs)
if not self._no_output:
if self.output:
assert self.output.shape[1:] == self.output_shape[1:]
if not self.output or self.output_shape[0] != self.output.shape[0]:
self.output.reset(
numpy.zeros(self.output_shape, self.input.dtype))
self.output.initialize(self.device)
self.input.initialize(self.device)
def _gpu_init(self):
defines = {
'SX': self.sx,
'SY': self.sy,
'N_CHANNELS': self.n_channels,
'KX': self.kx,
'KY': self.ky,
'SLIDE_X': self.sliding[0],
'SLIDE_Y': self.sliding[1],
'OUTPUT_SIZE': self.output_size
}
self.build_program(
defines, "%s_%d_%dx%dx%d_%dx%d" %
(self.__class__.__name__, self.input.shape[0],
self.sx, self.sy, self.n_channels,
self.kx, self.ky), dtype=self.input.dtype)
self.assign_kernel(self._kernel_name)
def ocl_init(self):
sh = self.output_shape
self._gpu_init()
self._global_size = [sh[3] * sh[2], sh[1] * sh[0]]
self._local_size = None
def cuda_init(self):
self._gpu_init()
block_size = self.device.suggest_block_size(self._kernel_)
self._global_size = (int(numpy.ceil(self.output_size / block_size)),
1, 1)
self._local_size = (block_size, 1, 1)
def print_debug_data(self, t_start):
"""Show some statistics.
"""
if not self.logger.isEnabledFor(logging.DEBUG):
return
y = self.input.mem
self.debug(
"%s: %d samples of size %dx%dx%d vs "
"pooling window of size %dx%d and sliding %dx%d in %.2f sec" %
(self.__class__.__name__, y.shape[0], y.shape[2], y.shape[1],
y.shape[3], self.kx, self.ky, self.sliding[0], self.sliding[1],
time.time() - t_start))
def _gpu_run(self):
self.unmap_vectors(self.input, self.output)
self.execute_kernel(self._global_size, self._local_size)
def ocl_run(self):
self._gpu_run()
def cuda_run(self):
self._gpu_run()
def numpy_run(self):
self.input.map_read()
self.output.map_invalidate()
for batch, ch, out_x, out_y in product(*map(range, (
self.input_batch_size, self.n_channels) + self.out_sxy)):
x1 = out_x * self.sliding[0]
y1 = out_y * self.sliding[1]
test_idx = x1 + self.kx
x2 = test_idx if test_idx <= self.sx else self.sx
test_idx = y1 + self.ky
y2 = test_idx if test_idx <= self.sy else self.sy
cut = self.input.mem[batch, y1:y2, x1:x2, ch]
val = self.numpy_run_cut(cut, (batch, y1, x1, ch, out_y, out_x))
self.output.mem[batch, out_y, out_x, ch] = val
def run(self):
t1 = time.time()
retval = super(Pooling, self).run()
if retval:
return retval
self.print_debug_data(t1)
class OffsetPooling(Pooling):
"""Pooling by offset forward propagation.
Must be assigned before initialize():
Updates after run():
input_offset
Creates within initialize():
input_offset
Attributes:
input_offset: offsets in the input where elements are passed through.
"""
MAPPING = set()
hide_from_registry = True
def __init__(self, workflow, **kwargs):
super(OffsetPooling, self).__init__(workflow, **kwargs)
self.input_offset = Array()
self.demand("input")
def initialize(self, device, **kwargs):
super(OffsetPooling, self).initialize(device=device, **kwargs)
if self._no_output:
return
if self.input_offset:
assert self.input_offset.shape[1:] == self.output.shape[1:]
if (not self.input_offset or
self.input_offset.shape[0] != self.output.shape[0]):
self.input_offset.reset(numpy.zeros(self.output.shape,
dtype=numpy.int32))
self.input_offset.initialize(self.device)
def set_args(self, *args):
super(OffsetPooling, self).set_args(self.input, self.output,
self.input_offset, *args)
def ocl_run(self):
self.input_offset.unmap()
super(OffsetPooling, self).ocl_run()
def cuda_run(self):
self.input_offset.unmap()
super(OffsetPooling, self).cuda_run()
def numpy_run(self):
self.input_offset.map_invalidate()
super(OffsetPooling, self).numpy_run()
def numpy_run_cut(self, cut, coords):
batch, y1, x1, ch, out_y, out_x = coords
cut_index = self.numpy_run_cut_offset(
cut, numpy.ravel_multi_index((batch, out_y, out_x, ch),
self.output.shape))
i, j = numpy.unravel_index(cut_index, cut.shape)
idx = numpy.ravel_multi_index((batch, y1 + i, x1 + j, ch),
self.input.shape)
val = numpy.ravel(self.input.mem)[idx]
self.input_offset.mem[batch, out_y, out_x, ch] = idx
return val
class MaxPoolingBase(OffsetPooling):
"""MaxPooling forward propagation base class.
"""
MAPPING = set()
hide_from_registry = True
def init_unpickled(self):
super(MaxPoolingBase, self).init_unpickled()
self._kernel_name = "max_pooling"
def ocl_init(self):
super(MaxPoolingBase, self).ocl_init()
self.set_args()
def cuda_init(self):
super(MaxPoolingBase, self).cuda_init()
self.set_args()
class MaxPooling(MaxPoolingBase):
"""MaxPooling forward propagation.
"""
MAPPING = {"max_pooling"}
def numpy_run_cut_offset(self, cut, index):
return cut.argmax()
class MaxAbsPooling(MaxPoolingBase):
"""MaxAbsPooling forward propagation.
Must be assigned before initialize():
Updates after run():
input_offset
Creates within initialize():
input_offset
Attributes:
input_offset: offsets in the input where maximum elements were found.
"""
MAPPING = {"maxabs_pooling"}
def __init__(self, workflow, **kwargs):
super(MaxAbsPooling, self).__init__(workflow, **kwargs)
self.sources_["pooling"] = {"ABS_VALUES": 1}
def numpy_run_cut_offset(self, cut, index):
return numpy.abs(cut).argmax()
class StochasticPoolingBase(OffsetPooling):
"""Stochastic pooling forward propagation.
Attributes:
uniform: instance of veles.prng.Uniform.
"""
MAPPING = set()
hide_from_registry = True
def __init__(self, workflow, **kwargs):
super(StochasticPoolingBase, self).__init__(workflow, **kwargs)
self.uniform = kwargs.get("uniform")
def init_unpickled(self):
super(StochasticPoolingBase, self).init_unpickled()
self._rand_set = False
self._rand_arg = 3
self._kernel_name = "stochastic_pooling"
def initialize(self, device, **kwargs):
super(StochasticPoolingBase, self).initialize(device=device, **kwargs)
if self.uniform is None:
self.uniform = Uniform(self)
if self.uniform.output_bytes < (self.output_size << 1):
if self.uniform.is_initialized:
raise ValueError(
"uniform is already initialized and does not have enough "
"output size")
self.uniform.output_bytes = self.output_size << 1
self.uniform.initialize(self.device)
def ocl_init(self):
super(StochasticPoolingBase, self).ocl_init()
self.assign_kernel(self._kernel_name)
self.set_args()
def cuda_init(self):
super(StochasticPoolingBase, self).cuda_init()
self.assign_kernel(self._kernel_name)
self.set_args()
def add_ref(self, unit):
pass
def numpy_run(self):
self.uniform.numpy_fill(self.output_size << 1)
super(StochasticPoolingBase, self).numpy_run()
def ocl_run(self):
if not self._rand_set:
self.set_arg(self._rand_arg, self.uniform.output)
self._rand_set = True
self.uniform.ocl_fill(self.output_size << 1)
super(StochasticPoolingBase, self).ocl_run()
def cuda_run(self):
if not self._rand_set:
self.set_arg(self._rand_arg, self.uniform.output)
self._rand_set = True
self.uniform.cuda_fill(self.output_size << 1)
super(StochasticPoolingBase, self).cuda_run()
def calculate_position_cpu(self, index, vsum):
rnd = self.uniform.output.mem.view(dtype=numpy.uint16)[index]
return rnd * vsum / 65536
def calculate_random_index_cpu(self, cut, index):
rnd = self.uniform.output.mem.view(dtype=numpy.uint16)[index]
return int(rnd * cut.size >> 16)
class StochasticPooling(StochasticPoolingBase):
"""StochasticPooling forward propagation.
"""
MAPPING = {"stochastic_pooling"}
def numpy_run_cut_offset(self, cut, index):
vsum = numpy.sum(cut[cut > 0])
if vsum == 0:
return self.calculate_random_index_cpu(cut, index)
position = self.calculate_position_cpu(index, vsum)
vsum = 0
for i in range(cut.size):
val = cut.ravel()[i]
if val > 0:
vsum += val
if position <= vsum:
return i
class StochasticAbsPooling(StochasticPoolingBase):
"""StochasticAbsPooling forward propagation.
"""
MAPPING = {"stochastic_abs_pooling"}
def __init__(self, workflow, **kwargs):
super(StochasticAbsPooling, self).__init__(workflow, **kwargs)
self.sources_["pooling"] = {"ABS_VALUES": 1}
def numpy_run_cut_offset(self, cut, index):
vsum = numpy.sum(numpy.abs(cut))
if vsum == 0:
return self.calculate_random_index_cpu(cut, index)
position = self.calculate_position_cpu(index, vsum)
vsum = 0
for i in range(cut.size):
val = cut.ravel()[i]
vsum += abs(val)
if position <= vsum:
return i
class StochasticPoolingDepooling(StochasticPooling):
"""Stochastic pooling with depooling in-place.
"""
MAPPING = {"stochastic_pool_depool"}
def __init__(self, workflow, **kwargs):
super(StochasticPoolingDepooling, self).__init__(workflow, **kwargs)
self._no_output = True
def init_unpickled(self):
super(StochasticPoolingDepooling, self).init_unpickled()
self.sources_["pooling"]["USE_POOLING_DEPOOLING"] = 1
self._rand_arg = 1
self._kernel_name = "stochastic_pooling_depooling"
def set_args(self, *args):
self.set_arg(0, self.input)
def numpy_run(self):
raise NotImplementedError()
class StochasticAbsPoolingDepooling(StochasticPoolingDepooling):
"""Stochastic abs pooling with depooling in-place.
"""
MAPPING = {"stochastic_abs_pool_depool"}
def __init__(self, workflow, **kwargs):
super(StochasticAbsPoolingDepooling, self).__init__(workflow, **kwargs)
def init_unpickled(self):
super(StochasticAbsPoolingDepooling, self).init_unpickled()
self.sources_["pooling"]["ABS_VALUES"] = 1
class AvgPooling(Pooling):
"""AvgPooling forward propagation.
Must be assigned before initialize():
Updates after run():
Creates within initialize():
"""
MAPPING = {"avg_pooling"}
def init_unpickled(self):
super(AvgPooling, self).init_unpickled()
self._kernel_name = "avg_pooling"
def ocl_init(self):
super(AvgPooling, self).ocl_init()
self.set_args(self.input, self.output)
def cuda_init(self):
super(AvgPooling, self).cuda_init()
self.set_args(self.input, self.output)
def numpy_run_cut(self, cut, coords):
return numpy.sum(cut) / cut.size