-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_clutter_grasp.py
413 lines (385 loc) · 18.9 KB
/
test_clutter_grasp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import argparse
import time
from pathlib import Path
import numpy
import numpy as np
import open3d as o3d
from simulator.grasp import Grasp, Label
from simulator.simulation_clutter_bandit import ClutterRemovalSim
from simulator.transform import Rotation, Transform
from simulator.io_smi import *
from simulator.utility import FarthestSamplerTorch, get_gripper_points_mask, orthogonal_grasps, FarthestSampler
#from utility import bandit_grasp
import warnings
import torch
from torch_geometric.nn import radius
import torch.nn.functional as F
from torch_geometric.data import Data, Batch
from torch.backends import cudnn
from termcolor import colored
from models.edge_grasper import EdgeGrasper
from models.vn_edge_grasper import EdgeGrasper as VNGrasper
import tqdm
warnings.filterwarnings("ignore")
# OBJECT_COUNT_LAMBDA = 4
# MAX_VIEWPOINT_COUNT = 4
RUN_TIMES = 4
NUMBER_SCENE = 100
NUMBER_VIEWS = 1
OBJECT_COUNT_LAMBDA = 4
GRASP_PER_SCENE = 1
def main(args):
device = args.device
if device == 1:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device('cpu')
if args.vn:
grasper = VNGrasper(device=args.device, root_dir='./vn_edge_pretrained_para', load=105)
else:
grasper = EdgeGrasper(device=args.device, root_dir='./edge_grasp_net_pretrained_para', load=180)
sim = ClutterRemovalSim(args.scene, args.object_set, gui=args.sim_gui,rand=args.rand)
# finger_depth = sim.gripper.finger_depth
# root = Path('data_robot/raw/foo_implicit')
# (root / "pcd").mkdir(parents=True, exist_ok=True)
# write_setup(
# root,
# sim.size,
# sim.camera.intrinsic,
# sim.gripper.max_opening_width,
# sim.gripper.finger_depth, )
# # sim.show_object()
# memory = ReplayMemory(capacity=1000)
record = []
for RUN in range(RUN_TIMES):
np.random.seed(RUN + 1)
torch.set_num_threads(RUN + 1)
torch.manual_seed(RUN + 1)
cudnn.benchmark = True
cudnn.deterministic = True
num_rounds = 100
silence = False
cnt = 0
success = 0
left_objs = 0
total_objs = 0
cons_fail = 0
for _ in tqdm.tqdm(range(num_rounds), disable=silence):
object_count = np.random.poisson(OBJECT_COUNT_LAMBDA) + 1
object_count = 5
sim.reset(object_count)
###
total_objs += sim.num_objects
consecutive_failures = 1
last_label = None
trial_id = -1
###
skip_time = 0
empyty = False
while sim.num_objects>0 and consecutive_failures<2 and skip_time<3:
trial_id += 1
# use one camera views
n = 1
depth_imgs, extrinsics, eye = render_images(sim, n)
# reconstrct point cloud using a subset of the images
tsdf = create_tsdf(sim.size, 180, depth_imgs, sim.camera.intrinsic, extrinsics)
pc = tsdf.get_cloud()
camera_location = eye
# crop surface and borders from point cloud
bounding_box = o3d.geometry.AxisAlignedBoundingBox(sim.lower, sim.upper)
# o3d.visualization.draw_geometries([pc])
pc = pc.crop(bounding_box)
if pc.is_empty():
print("Empty point cloud, skipping scene")
empyty = True
break
if args.add_noise:
vertices = np.asarray(pc.points)
# add gaussian noise 95% confident interval (-1.96,1.96)
vertices = vertices + np.random.normal(loc=0.0, scale=0.0008, size=(len(vertices), 3))
pc.points = o3d.utility.Vector3dVector(vertices)
vertices = np.asarray(pc.points)
if len(vertices) < 100:
print("point cloud<100, skipping scene")
#skip_time += 1
empyty=True
break
time0 = time.time()
pc, ind = pc.remove_statistical_outlier(nb_neighbors=30, std_ratio=1.0)
pc, ind = pc.remove_radius_outlier(nb_points=30, radius=0.03)
pc.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.04, max_nn=30))
pc.orient_normals_consistent_tangent_plane(30)
# orient the normals direction
#pc.orient_normals_towards_camera_location(camera_location=camera_location)
normals = np.asarray(pc.normals)
vertices = np.asarray(pc.points)
if len(vertices) < 100:
print("point cloud<100, skipping scene")
skip_time += 1
break
pc = pc.voxel_down_sample(voxel_size=0.0045)
# continue
#o3d.visualization.draw_geometries([pc], point_show_normal=True)
# break
#########################
pos = np.asarray(pc.points)
#print(len(pos))
normals = np.asarray(pc.normals)
pos = torch.from_numpy(pos).to(torch.float32).to(device)
# print('min z, max z', pos[:,-1].min(), pos[:,-1].max())
normals = torch.from_numpy(normals).to(torch.float32).to(device)
sample_number = args.sample_number
fps_sample = FarthestSamplerTorch()
_, sample = fps_sample(pos,sample_number)
sample = torch.as_tensor(sample).to(torch.long).reshape(-1).to(device)
sample = torch.unique(sample,sorted=True)
#print(sample)
#sample = np.random.choice(len(pos), sample_number, replace=False)
#sample = torch.from_numpy(sample).to(torch.long)
sample_pos = pos[sample, :]
radius_p_batch_index = radius(pos, sample_pos, r=0.05, max_num_neighbors=1024)
radius_p_index = radius_p_batch_index[1, :]
radius_p_batch = radius_p_batch_index[0, :]
sample_pos = torch.cat(
[sample_pos[i, :].repeat((radius_p_batch == i).sum(), 1) for i in range(len(sample))],
dim=0)
sample_copy = sample.clone().unsqueeze(dim=-1)
sample_index = torch.cat(
[sample_copy[i, :].repeat((radius_p_batch == i).sum(), 1) for i in range(len(sample))], dim=0)
edges = torch.cat((sample_index, radius_p_index.unsqueeze(dim=-1)), dim=1)
#all_edge_index = numpy.arange(0, len(edges))
all_edge_index = torch.arange(0,len(edges)).to(device)
des_pos = pos[radius_p_index, :]
des_normals = normals[radius_p_index, :]
relative_pos = des_pos - sample_pos
# fps_torch = FarthestSamplerTorch()
# edge_global_idx = []
# for i in range(args.sample_number):
# batch_mask = radius_p_batch == i
# num = torch.sum(batch_mask)
#
# if num < 70:
# edge_global_idx.append(all_edge_index[batch_mask])
# else:
# des_batch_pos = des_pos[batch_mask, :]
# des_batch_index = all_edge_index[batch_mask]
# _, idx = fps_torch(des_batch_pos, 60)
# edge_global_idx.append(des_batch_index[idx])
# edge_global_idx = torch.cat(edge_global_idx, dim=0)
# # print(edge_global_idx.size())
relative_pos_normalized = F.normalize(relative_pos, p=2, dim=1)
# set up the record
label_record = []
# edge_sample_index = []
quat_record = []
translation_record = []
# only record approach vectors with a angle mask
x_axis = torch.cross(des_normals, relative_pos_normalized)
x_axis = F.normalize(x_axis, p=2, dim=1)
valid_edge_approach = torch.cross(x_axis, des_normals)
valid_edge_approach = F.normalize(valid_edge_approach, p=2, dim=1)
valid_edge_approach = -valid_edge_approach
# print('new approachs',valid_edge_approach.shape)
up_dot_mask = torch.einsum('ik,k->i', valid_edge_approach, torch.tensor([0., 0., 1.]).to(device))
relative_norm = torch.linalg.norm(relative_pos, dim=-1)
# print(relative_norm.size())
depth_proj = -torch.sum(relative_pos * valid_edge_approach, dim=-1)
geometry_mask = torch.logical_and(up_dot_mask > -0.1, relative_norm > 0.003)
geometry_mask = torch.logical_and(relative_norm<0.038,geometry_mask)
depth_proj_mask = torch.logical_and(depth_proj > -0.000, depth_proj < 0.04)
geometry_mask = torch.logical_and(geometry_mask, depth_proj_mask)
if torch.sum(geometry_mask)<10:
skip_time+=1
continue
# draw_grasps2(geometry_mask, depth_proj, valid_edge_approach, des_normals, sample_pos, pos, sample, des=None, scores=None)
pose_candidates = orthogonal_grasps(geometry_mask, depth_proj, valid_edge_approach, des_normals,
sample_pos)
table_grasp_mask = get_gripper_points_mask(pose_candidates,threshold=0.054)
# print('no collision with table candidates all', table_grasp_mask.sum())
geometry_mask[geometry_mask == True] = table_grasp_mask
# wether fps
# geometry_mask = torch.logical_and(geometry_mask,geometry_mask2)
edge_sample_index = all_edge_index[geometry_mask]
# print('no collision with table candidates', len(edge_sample_index))
if len(edge_sample_index) > 0:
if len(edge_sample_index) > 1500:
edge_sample_index = edge_sample_index[torch.randperm(len(edge_sample_index))[:1500]]
edge_sample_index, _ = torch.sort(edge_sample_index)
# print('candidate numbers', len(edge_sample_index))
data = Data(pos=pos, normals=normals, sample=sample, radius_p_index=radius_p_index,
ball_batch=radius_p_batch,
ball_edges=edges, approaches=valid_edge_approach[edge_sample_index, :],
reindexes=edge_sample_index,
relative_pos=relative_pos[edge_sample_index, :],
depth_proj=depth_proj[edge_sample_index])
data = data.to(device)
score, depth_projection, approaches, sample_pos, des_normals = grasper.model.act(data)
if not args.baseline:
# max_indice = torch.argmax(score)
# print(score.size())
k_score, max_indice = torch.topk(score, k=1)
selected_edge = edges[edge_sample_index[max_indice],:]
max_score = score[max_indice]
max_score = F.sigmoid(max_score).cpu().numpy()
#print('max score', max_score)
if max_score.any() < 0.85:
print('no confident on this observation, skip')
skip_time+=1
continue
else:
print('baseline')
max_indice = torch.randint(low=0, high=len(score),size=(1,))
grasp_mask = torch.ones(len(depth_projection)) > 2.
grasp_mask[max_indice] = True
trans_matrix = orthogonal_grasps(grasp_mask.to(des_normals.device), depth_projection, approaches,
des_normals, sample_pos)
trans_matrix = trans_matrix.cpu().numpy()
if args.point_sample:
print('point sample')
trans_matrix = sample_grasp_point(pc)
## width
if args.width:
widthes = torch.abs(torch.sum(data.relative_pos * des_normals, dim=-1)) + 0.016
widthes = widthes[grasp_mask].clip(max=0.04)
widthes = (widthes * 2).cpu().numpy()
else:
widthes = None
# evaluation
res = evaluate_grasps(sim, poses=trans_matrix,width_pre=widthes)
success_num, des_list, quats, translations = res
cnt += 1
label = success_num[0]
if label!=Label.FAILURE:
success+=1
if last_label == Label.FAILURE and label == Label.FAILURE:
consecutive_failures += 1
else:
consecutive_failures = 1
if consecutive_failures >= 2:
cons_fail += 1
last_label = label
else:
print('no candidates without collision')
skip_time+=1
continue
left_objs += sim.num_objects
success_rate = 100.0 * success / cnt
declutter_rate = 100.0 * success / total_objs
print('success grasp:' ,success, 'total grasp:', cnt, 'total objects:', total_objs)
print('Grasp success rate: %.2f %%, Declutter rate: %.2f %%' % (success_rate, declutter_rate))
log = [success_rate, declutter_rate]
record.append(log)
#print(record)
scene_name = str(args.scene)
sample_num = args.sample_number
np.save('clutter_record_{}_{}'.format(scene_name,sample_num), np.asarray(record))
def render_images(sim, n):
height, width = sim.camera.intrinsic.height, sim.camera.intrinsic.width
origin = Transform(Rotation.identity(), np.r_[sim.size / 2, sim.size / 2, 0.0 + 0.25])
extrinsics = np.empty((n, 7), np.float32)
depth_imgs = np.empty((n, height, width), np.float32)
for i in range(n):
r = np.random.uniform(2, 2.5) * sim.size
theta = np.random.uniform(np.pi/4, np.pi/3)
phi = np.random.uniform(0.0, np.pi)
extrinsic = camera_on_sphere(origin, r, theta, phi)
depth_img = sim.camera.render(extrinsic)[1]
extrinsics[i] = extrinsic.to_list()
depth_imgs[i] = depth_img
eye = np.r_[
r * sin(theta) * cos(phi),
r * sin(theta) * sin(phi),
r * cos(theta),
]
eye = eye + origin.translation
return depth_imgs, extrinsics, eye
def sample_trig(a_c):
theta = np.random.rand(a_c) * np.pi * 2
v = np.random.uniform(0.5, 1, size=a_c)
phi = np.arccos(2 * v - 1)
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
sin_phi = np.sin(phi)
cos_phi = np.cos(phi)
x = cos_theta * sin_phi
y = sin_theta * sin_phi
z = cos_phi
vectors = np.stack((x, y, z), axis=1)
return vectors
def normalization(x):
x_norm = max(np.linalg.norm(x), 1e-12)
x = x / x_norm
return x
def sample_grasp_point(point_cloud, finger_depth=0.05, eps=0.1):
points = np.asarray(point_cloud.points)
normals = np.asarray(point_cloud.normals)
ok = False
while not ok:
# TODO this could result in an infinite loop, though very unlikely
idx = np.random.randint(len(points))
point, normal = points[idx], normals[idx]
ok = normal[2] > -0.1 # make sure the normal is poitning upwards
grasp_depth = np.random.uniform(-eps * finger_depth, (1.0 + eps) * finger_depth)
point = point + normal * grasp_depth # match the tcp point
z_axis = -normal
x_axis = np.r_[1.0, 0.0, 0.0]
if np.isclose(np.abs(np.dot(x_axis, z_axis)), 1.0, 1e-4):
x_axis = np.r_[0.0, 1.0, 0.0]
y_axis = np.cross(z_axis, x_axis)
x_axis = np.cross(y_axis, z_axis)
R = Rotation.from_matrix(np.vstack((x_axis, y_axis, z_axis)).T)
# try to grasp with a random yaw angles
yaws = np.linspace(0.0, np.pi, 12, endpoint=False)
idx = np.random.randint(len(yaws))
yaw = yaws[idx]
ori = R * Rotation.from_euler("z", yaw)
pose = Transform(ori, point).as_matrix()[np.newaxis,...]
return pose
def evaluate_grasps(sim, poses, width_pre=None):
outcomes, widths, describtions = [], [], []
quats, translations = [], []
for i in range(len(poses)):
pose = poses[i, :, :]
#sim.restore_state()
dof_6 = Transform.from_matrix(pose)
# decompose the quat
quat = dof_6.rotation.as_quat()
translation = dof_6.translation
if width_pre is not None:
width = width_pre[i]
else:
width = sim.gripper.max_opening_width
candidate = Grasp(dof_6, width=width)
# outcome, width, describtion = sim.execute_grasp(candidate, remove=False)
outcome, width, describtion = sim.execute_grasp_quick(candidate,allow_contact=True,remove=True)
#sim.restore_state()
outcomes.append(outcome)
widths.append(width)
describtions.append(describtion)
quats.append(quat)
translations.append(translation)
# break
successes = (np.asarray(outcomes) == Label.SUCCESS).astype(int)
return successes, describtions, quats, translations
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# parser.add_argument("root", type=Path, default=Path("/data_robot/raw/foo"))
#choices = ["pile", "packed", "obj", "egad"]
parser.add_argument("--scene", type=str, choices=["pile", "packed", "obj", "egad"], default="packed")
parser.add_argument("--object-set", type=str, default="packed/test")
parser.add_argument("--sample_number", type=int, default=32)
parser.add_argument("--device", type=int, default=1)
parser.add_argument("--grasp_obs", type=int, default=1)
parser.add_argument("--sim-gui", action="store_true", default =True)
parser.add_argument("--rand", action="store_true", default = True)
parser.add_argument("--width", action="store_true", default=False)
parser.add_argument("--baseline", action="store_true", default=False)
parser.add_argument("--point_sample", action="store_true", default=False)
parser.add_argument("--all", action="store_true", default=False)
parser.add_argument("--add_noise", action="store_true", default=True)
parser.add_argument("--draw_all", action="store_true", default=False)
parser.add_argument("--draw_failure", action="store_true", default=False)
parser.add_argument("--hybrid", action="store_true", default=False)
parser.add_argument("--vn", action="store_true", default=False)
args = parser.parse_args()
main(args)