-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUNET_Dropout_ROI_Regression_Context_Enhanced.py
708 lines (535 loc) · 32.7 KB
/
UNET_Dropout_ROI_Regression_Context_Enhanced.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
from collections import defaultdict
import sys
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import mean_absolute_error as mae
import time
import argparse
import os
import math
import random
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import binarize
from sklearn.metrics import accuracy_score,confusion_matrix
#import umap
from sklearn.manifold import TSNE as tsne
DTYPE=tf.float32
import subprocess
from sklearn.feature_extraction.image import extract_patches_2d
import nibabel as nib
from data_processing_3d_regression import *
from loading_data import *
from network_architectures import *
from propagate_layers import *
from losses import *
def extract_3d_blocks_training_regression(inputul, outputul, iteration,
block_size_input, block_size_output, list_block_size_output_context, mask,
num_subjects, num_voxels_per_subject, gender, indices_structural_plm):
### gender(num_batch, 1)
### size of brain_scan (121, 145, 121)
### mask -- (121, 145, 121) -- if using both GM and WM
### inputul -- shape (num_batch, width, height, depth, num_imaging_modalities)
### outputul -- shape (num_batch, 1)
### current_shape = mask.shape
lista = np.arange(len(inputul.keys()))
np.random.seed(iteration)
np.random.shuffle(lista)
current_index = lista[:num_subjects]
semi_block_size_input = int(block_size_input//2)
semi_block_size_input2 = block_size_input - semi_block_size_input
semi_block_size_output = int(block_size_output//2)
semi_block_size_output2 = block_size_output - semi_block_size_output
list_semi_block_size_output_context = [int(list_block_size_output_context[_]//2) for _ in range(3)]
list_semi_block_size_output2_context = [list_block_size_output_context[_] - list_semi_block_size_output_context[_] for _ in range(3)]
list_blocks_input = []
list_blocks_segmentation = []
list_block_masks = []
list_block_masks_context = defaultdict()
list_blocks_segmentation_context = defaultdict()
list_age = []
for _ in range(3):
list_block_masks_context[_] = []
list_blocks_segmentation_context[_] = []
for _ in current_index:
##### iterating over brain scans #####
### pad current input and output scan to avoid problems ####
current_input = inputul[_]
current_output = outputul[_]
current_gender = gender[_]
#### shape of current scan ####
current_shape = inputul[_].shape
#indices_tumor = np.where(mask[...] > 0.0
indices_tumor_dim1 = indices_structural_plm[0]
indices_tumor_dim2 = indices_structural_plm[1]
indices_tumor_dim3 = indices_structural_plm[2]
list_of_random_places = random.sample(range(0, len(indices_tumor_dim1)), num_voxels_per_subject)
for __ in range(num_voxels_per_subject):
central_points = [indices_tumor_dim1[list_of_random_places[__]],
indices_tumor_dim2[list_of_random_places[__]], indices_tumor_dim3[list_of_random_places[__]]]
print(central_points)
plm = check_mask(mask, central_points, semi_block_size_output, semi_block_size_output2)
print(plm.shape)
for current_iteration in range(3):
plm_context = check_mask(mask, central_points, list_semi_block_size_output_context[current_iteration],
list_semi_block_size_output2_context[current_iteration])
print(plm_context.shape)
list_block_masks_context[current_iteration].append(plm_context > 0.0)
current_input_padded, central_points = check_and_add_zero_padding_regression(current_input,central_points,
semi_block_size_input, semi_block_size_input2)
list_blocks_segmentation.append(np.ones((block_size_output,block_size_output,block_size_output,1))*current_output)
for current_iteration in range(3):
list_blocks_segmentation_context[current_iteration].append(np.ones((list_block_size_output_context[current_iteration],
list_block_size_output_context[current_iteration],
list_block_size_output_context[current_iteration],1))*current_output)
cropped_input_block = crop_3D_block(current_input_padded, central_points, semi_block_size_input, semi_block_size_input2)
print(cropped_input_block.shape)
gender_3d_block = np.ones((block_size_input,
block_size_input, block_size_input, 1)) * np.float(current_gender)
cropped_input_block = np.concatenate((cropped_input_block,gender_3d_block),axis=-1)
list_blocks_input.append(cropped_input_block)
list_block_masks.append(plm > 0.0)
list_age.append(current_output)
list_blocks_input = np.stack(list_blocks_input)
list_blocks_segmentation = np.stack(list_blocks_segmentation)
list_block_masks = np.stack(list_block_masks)
for current_iteration in range(3):
list_block_masks_context[current_iteration] = np.stack(list_block_masks_context[current_iteration])
list_blocks_segmentation_context[current_iteration] = np.stack(list_blocks_segmentation_context[current_iteration])
list_age = np.stack(list_age)
list_age = np.reshape(list_age, [-1,1])
return list_blocks_input, list_blocks_segmentation, list_block_masks, list_blocks_segmentation_context, list_block_masks_context, list_age
def timer(start,end):
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
print("{:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds))
class UNET_Dropout_ROI_Context_Enhanced(object):
#############################################################
######### 3D data -- Regression --Context Enhanced ##########
#############################################################
def __init__(self, dim_input, dim_output, num_iterations, num_encoding_layers,
num_batch, num_filters, dim_filter, num_stride,
use_epistemic_uncertainty, size_cube_input, size_cube_output,
learning_rate, num_layers_same_scale, import_model, iteration_restored, unet_type, keep_prob, mean_age,
num_averaged_gradients, num_subjects, num_voxels_per_subject, testing_time):
self.testing_time = testing_time
self.num_subjects = num_subjects
self.num_voxels_per_subject = num_voxels_per_subject
self.num_averaged_gradients = num_averaged_gradients
self.mean_age = mean_age
self.keep_prob = keep_prob #### keepprob for DropBlock #####
self.unet_type = unet_type #### could be "2D" or "3D" ####
self.iteration_restored = iteration_restored #### the iteration/epoch at which we are retriving the saved model ####
self.import_model = import_model ##### boolean, wheter to use for training or testing
self.num_layers_same_scale = num_layers_same_scale #### the number of layers at the same scale inside the UNET architecture
self.learning_rate = learning_rate #### constant learning rate to be used
self.size_cube_input = size_cube_input #### shape of the input data -- scalar
self.size_cube_output = size_cube_output ### shaoe of the output data -- scalar --- you have to calculate it
self.use_epistemic_uncertainty = use_epistemic_uncertainty #### boolean, wheter to compute epistemic uncertaintiy
self.num_stride = num_stride #### scalar, num stride -- I thinks its useless
self.dim_filter = dim_filter #### scalar, usuallY 3
self.num_batch = num_batch #### size of minibatch
self.dim_input = dim_input #### number of input channels
self.dim_output = dim_output #### number of classes for classification
self.num_iterations = num_iterations #### number of training iterations
self.num_encoding_layers = num_encoding_layers ### scalar , number of scales for UNET
self.num_filters = num_filters #### number of filters at each convolution operation
def setup_train(self):
outputul_list = [self.Y_train]
outputul_list.extend(self.list_Y_train_context)
outputul_list.append(self.Y_train_global)
masks_list = [self.X_train_mask]
masks_list.extend(self.list_X_train_mask_context)
self._loss_op, self.mae_training, self.list_mae_training_context, self.list_mae_training_context_global = mae_error_context_enhanced(inputul = UNET_network_context_enhanced(inputul = self.X_train,
num_encoding_layers = self.num_encoding_layers, unet_type = self.unet_type, mode=True,
keep_prob = self.keep_prob,
num_layers_same_scale = self.num_layers_same_scale, dim_output = self.dim_output, num_filters = self.num_filters),
outputul = outputul_list,
unet_type = self.unet_type, dim_output = self.dim_output,
masks = masks_list, loss_weights = self.loss_weights)
extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if self.import_model:
self.global_step = tf.Variable(self.iteration_restored, trainable = False)
else:
self.global_step = tf.Variable(0, trainable = False)
starter_learning_rate = self.learning_rate
learning_rate = tf.train.exponential_decay(starter_learning_rate, self.global_step, 100000, 0.1, staircase=True)
# Passing global_step to minimize() will increment it at each step.
if self.num_averaged_gradients == 1:
with tf.control_dependencies(extra_update_ops):
self._train_op = tf.train.AdamOptimizer(learning_rate).minimize(self._loss_op, global_step = self.global_step)
else:
# here 'train_op' only applies gradients passed via placeholders stored
# in 'grads_placeholders. The gradient computation is done with 'grad_op'.
optimizer = tf.train.AdamOptimizer(learning_rate)
with tf.control_dependencies(extra_update_ops):
grads_and_vars = optimizer.compute_gradients(self._loss_op)
avg_grads_and_vars = []
self._grad_placeholders = []
for grad, var in grads_and_vars:
grad_ph = tf.placeholder(grad.dtype, grad.shape)
self._grad_placeholders.append(grad_ph)
avg_grads_and_vars.append((grad_ph, var))
self._grad_op = [x[0] for x in grads_and_vars]
self._train_op = optimizer.apply_gradients(avg_grads_and_vars)
self._gradients = [] # list to store gradients
def train(self, session, X_train_feed, Y_train_feed, X_training_mask_feed, list_Y_train_context_feed,
list_X_training_mask_feed_context, Y_train_global):
feed_dict = {
self.X_train: X_train_feed,
self.Y_train: Y_train_feed,
self.X_train_mask : X_training_mask_feed,
self.Y_train_global : Y_train_global}
for _ in range(3):
dictionar = {
self.list_Y_train_context[_] : list_Y_train_context_feed[_],
self.list_X_train_mask_context[_] : list_X_training_mask_feed_context[_]}
feed_dict.update(dictionar)
if self.num_averaged_gradients == 1:
loss, _ = session.run([self._loss_op, self._train_op], feed_dict = feed_dict)
else:
loss, grads = session.run([self._loss_op, self._grad_op], feed_dict = feed_dict)
self._gradients.append(grads)
if len(self._gradients) == self.num_averaged_gradients:
for i, placeholder in enumerate(self._grad_placeholders):
feed_dict[placeholder] = np.stack([g[i] for g in self._gradients], axis=0).mean(axis=0)
session.run(self._train_op, feed_dict=feed_dict)
self._gradients = []
return loss
def session_TF(self, X_training, Y_training, gender_training, X_testing, Y_testing, gender_testing, mask,
affine, dataset_name, X_testing_names):
#### get the structural atlas ####
structural_atlas_object = nib.load('/vol/biomedic2/sgp15/data/atlases/combined_atlas.nii.gz')
structural_atlas_data = structural_atlas_object.get_data()
indices_structural = np.where(structural_atlas_data == 1.0)
indices_X = indices_structural[0]
indices_Y = indices_structural[1]
indices_Z = indices_structural[2]
ROI_end_points = defaultdict()
ROI_end_points[0] = [np.min(indices_X), np.max(indices_X)]
ROI_end_points[1] = [np.min(indices_Y), np.max(indices_Y)]
ROI_end_points[2] = [np.min(indices_Z), np.max(indices_Z)]
num_voxels_structural_ROI = len(indices_structural[0])
print('*************************')
print('number of voxels for ROI :'+str(num_voxels_structural_ROI))
print('*************************')
gpu_options = tf.GPUOptions(allow_growth=True)
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, gpu_options=gpu_options))
if not self.testing_time:
self.loss_weights = [0.5, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625]
self.X_train = tf.placeholder(tf.float32, shape=(None, self.size_cube_input, self.size_cube_input,
self.size_cube_input, self.dim_input), name='X_train')
self.Y_train = tf.placeholder(tf.float32, shape=(None, self.size_cube_output, self.size_cube_output,
self.size_cube_output, self.dim_output), name='Y_train')
self.X_train_mask = tf.placeholder(tf.bool, shape=(None, self.size_cube_output, self.size_cube_output,
self.size_cube_output), name='X_train_mask')
self.X_test = tf.placeholder(tf.float32, shape=(None, self.size_cube_input, self.size_cube_input, self.size_cube_input,
self.dim_input), name='X_test')
self.Y_test = tf.placeholder(tf.float32, shape=(None, self.size_cube_output, self.size_cube_output, self.size_cube_output,
self.dim_output), name='Y_test')
self.X_test_mask = tf.placeholder(tf.bool, shape=(None, self.size_cube_output, self.size_cube_output, self.size_cube_output),
name='X_test_mask')
self.Y_train_global = tf.placeholder(tf.float32, shape=(None,
self.dim_output), name='Y_test')
self.Y_test_global = tf.placeholder(tf.float32, shape=(None,
self.dim_output), name='Y_test')
##########################################
##### Modified Training Procedure ########
##########################################
predictions_testing, list_predictions_testing_context, list_predictions_testing_context_global = UNET_network_context_enhanced(inputul = self.X_test,
num_encoding_layers = self.num_encoding_layers, unet_type = self.unet_type, mode=True, keep_prob = self.keep_prob,
num_layers_same_scale = self.num_layers_same_scale, dim_output = self.dim_output, num_filters = self.num_filters)
### get the size of outputs at intermediate levels ###
print(list_predictions_testing_context)
self.list_size_cube_output_context = [list_predictions_testing_context[_].get_shape().as_list()[1] for _ in range(3)]
self.list_Y_train_context = [tf.placeholder(tf.float32, shape=(None, self.list_size_cube_output_context[_], self.list_size_cube_output_context[_],
self.list_size_cube_output_context[_], self.dim_output),
name='Y_train_context_'+str(_)) for _ in range(3)]
self.list_Y_test_context = [tf.placeholder(tf.float32, shape=(None, self.list_size_cube_output_context[_], self.list_size_cube_output_context[_],
self.list_size_cube_output_context[_], self.dim_output),
name='Y_test_context_'+str(_)) for _ in range(3)]
self.list_X_train_mask_context = [tf.placeholder(tf.float32, shape=(None, self.list_size_cube_output_context[_], self.list_size_cube_output_context[_],
self.list_size_cube_output_context[_]),
name='X_train_mask_context_'+str(_)) for _ in range(3)]
self.list_X_test_mask_context = [tf.placeholder(tf.float32, shape=(None, self.list_size_cube_output_context[_], self.list_size_cube_output_context[_],
self.list_size_cube_output_context[_]),
name='X_test_mask_context_'+str(_)) for _ in range(3)]
self.setup_train()
predictions_testing += self.mean_age
list_predictions_testing_context = [ list_predictions_testing_context[_] + self.mean_age for _ in range(3)]
list_predictions_testing_context_global = [ list_predictions_testing_context_global[_] + self.mean_age for _ in range(3)]
if self.import_model:
v1 = [v for v in tf.global_variables() if "Adam" not in v.name]
saver_grabber = tf.train.Saver(var_list=v1)
#saver_grabber = tf.train.Saver()
saver_grabber.restore(sess,tf.train.latest_checkpoint('./saved_model_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)))
else:
pass
#####################################################################
#### Need to eliminate background voxels at testing time for MAE ####
#####################################################################
flattened_boolean_mask_testing = tf.reshape(self.X_test_mask,[-1,])
correct_pred = tf.abs(tf.boolean_mask(tf.reshape(predictions_testing,[-1,]),
flattened_boolean_mask_testing)-tf.boolean_mask(tf.reshape(self.Y_test,[-1,]),flattened_boolean_mask_testing))
mae = tf.reduce_mean(correct_pred)
#######################################################################################
#### Need to eliminate background voxels at testing time for MAE at Context Levels ####
#######################################################################################
list_mae_context = []
list_mae_context_global = []
for _ in range(3):
flattened_boolean_mask_testing_context = tf.reshape(self.list_X_test_mask_context[_], [-1,])
correct_pred_context = tf.abs(tf.boolean_mask(tf.reshape(list_predictions_testing_context[_], [-1,]),
flattened_boolean_mask_testing_context) - tf.boolean_mask(tf.reshape(self.list_Y_test_context[_],[-1,]),
flattened_boolean_mask_testing_context))
list_mae_context.append(tf.reduce_mean(correct_pred_context))
list_mae_context_global.append(tf.reduce_mean(tf.abs(self.Y_test_global - list_predictions_testing_context_global[_])))
tf.summary.scalar('mae_testing', tf.squeeze(mae))
for _ in range(3):
tf.summary.scalar('mae_testing_context', tf.squeeze(list_mae_context[_]))
tf.summary.scalar('mae_testing_context_global', tf.squeeze(list_mae_context_global[_]))
tf.summary.scalar('mae_training', tf.squeeze(self.mae_training))
for _ in range(3):
tf.summary.scalar('mae_training_context', tf.squeeze(self.list_mae_training_context[_]))
tf.summary.scalar('mae_training_context', tf.squeeze(self.list_mae_training_context_global[_]))
tf.summary.scalar('re_cost', tf.squeeze(self._loss_op))
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('./tensorboard_3D_UNET_Dropout')
saver = tf.train.Saver()
if not self.import_model:
sess.run(tf.global_variables_initializer())
else:
### initalize Adam variables ###
v1 = [v for v in tf.global_variables() if "Adam" in v.name]
print(v1)
sess.run(tf.initialize_variables(var_list = v1))
graph = tf.get_default_graph()
cmd = 'mkdir -p ./saved_model_3D_UNET_Dropout'
os.system(cmd)
cmd = 'mkdir -p ./whole_segmentations_testing_3D_UNET_Dropout'
os.system(cmd)
for i in range(self.iteration_restored, self.num_iterations - self.iteration_restored):
if i<100000:
self.loss_weights = [0.5, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625]
elif i >= 100000 and i <150000:
self.loss_weights = [0.5, 0.15, 0.15, 0.15, 0.0, 0.0, 0.0]
elif i >= 150000 and i <200000:
self.loss_weights = [0.5, 0.0, 0.25, 0.25, 0.0, 0.0, 0.0]
elif i >= 200000 and i <250000:
self.loss_weights = [0.5, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0]
elif i>=250000:
self.loss_weights = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
else:
print('error')
costul_actual_overall = []
for separate_minibatch in range(self.num_averaged_gradients):
X_training_feed, Y_training_feed, X_training_feed_mask, list_Y_training_feed_context, list_X_training_feed_mask_context, Y_train_global_feed = extract_3d_blocks_training_regression(inputul = X_training,
outputul = Y_training, iteration = i, block_size_input = self.size_cube_input,
block_size_output = self.size_cube_output,
list_block_size_output_context = self.list_size_cube_output_context,
mask = mask, num_subjects = self.num_subjects,
num_voxels_per_subject = self.num_voxels_per_subject,
gender = gender_training,
indices_structural_plm = indices_structural)
print('******* things from data processing part *********')
print(X_training_feed.shape)
print(Y_training_feed.shape)
print(X_training_feed_mask.shape)
for _ in range(3):
print(list_Y_training_feed_context[_].shape)
print(list_X_training_feed_mask_context[_].shape)
costul_actual = self.train(session = sess, X_train_feed = X_training_feed, Y_train_feed = Y_training_feed,
X_training_mask_feed = X_training_feed_mask,
list_Y_train_context_feed = list_Y_training_feed_context,
list_X_training_mask_feed_context = list_X_training_feed_mask_context,
Y_train_global=Y_train_global_feed)
costul_actual_overall.append(costul_actual)
costul_actual = np.mean(costul_actual_overall)
if i % 500 ==0 and i!=0:
X_training_feed, Y_training_feed, X_training_feed_mask, list_Y_training_feed_context, list_X_training_feed_mask_context, Y_train_global_feed = extract_3d_blocks_training_regression(inputul = X_training,
outputul = Y_training, iteration = i, block_size_input = self.size_cube_input,
block_size_output = self.size_cube_output, mask = mask,
list_block_size_output_context = self.list_size_cube_output_context,
num_subjects = self.num_subjects, num_voxels_per_subject = self.num_voxels_per_subject,
gender = gender_training, indices_structural_plm = indices_structural)
X_testing_feed, Y_testing_feed, X_testing_feed_mask, list_Y_testing_feed_context, list_X_testing_feed_mask_context, Y_test_global_feed = extract_3d_blocks_training_regression(inputul = X_testing,
outputul = Y_testing, iteration = i, block_size_input = self.size_cube_input,
block_size_output = self.size_cube_output, mask = mask,
list_block_size_output_context = self.list_size_cube_output_context ,
num_subjects = self.num_subjects, num_voxels_per_subject = self.num_voxels_per_subject,
gender = gender_testing, indices_structural_plm = indices_structural)
print(Y_training_feed.shape)
print(Y_testing_feed.shape)
### create dictionary ###
feed_dict={self.X_train : X_training_feed,
self.Y_train : Y_training_feed,
self.X_test : X_testing_feed,
self.Y_test : Y_testing_feed,
self.X_train_mask : X_training_feed_mask,
self.X_test_mask : X_testing_feed_mask,
self.Y_train_global : Y_train_global_feed,
self.Y_test_global : Y_test_global_feed
}
for _ in range(3):
dictionar = {
self.list_Y_train_context[_] : list_Y_training_feed_context[_],
self.list_X_train_mask_context[_] : list_X_training_feed_mask_context[_],
self.list_Y_test_context[_] : list_Y_testing_feed_context[_],
self.list_X_test_mask_context[_] : list_X_testing_feed_mask_context[_]}
feed_dict.update(dictionar)
summary = sess.run(merged,
feed_dict=feed_dict)
train_writer.add_summary(summary,i)
if i % 10000 ==0 and i!=0:
cmd = './saved_model_3D_UNET_Dropout/iteration_'+str(i)
os.system(cmd)
saver.save(sess, './saved_model_3D_UNET_Dropout/iteration_'+str(i)+'/saved_UNET', global_step=i)
print('Saved checkpoint')
print('at iteration '+str(i) + ' we have nll : '+str(costul_actual))
elif self.testing_time:
X_test = tf.placeholder(tf.float32, shape=(None, self.size_cube_input, self.size_cube_input, self.size_cube_input,
self.dim_input), name='X_test')
Y_test = tf.placeholder(tf.float32, shape=(None, self.size_cube_output, self.size_cube_output, self.size_cube_output,
self.dim_output), name='Y_test')
Y_test_context = tf.placeholder(tf.float32, shape=(None, self.dim_output),
name='Y_test_context')
X_test_mask = tf.placeholder(tf.bool, shape=(None, self.size_cube_output, self.size_cube_output, self.size_cube_output),
name='X_test_mask')
predictions_testing, predictions_testing_context, predictions_testing_context2 = UNET_network_context_enhanced(inputul = X_test,
num_encoding_layers = self.num_encoding_layers, unet_type = self.unet_type, mode=True, keep_prob = self.keep_prob,
num_layers_same_scale = self.num_layers_same_scale, dim_output = self.dim_output, num_filters = self.num_filters)
predictions_testing += self.mean_age
#predictions_testing_context += self.mean_age
#predictions_testing_context2 += self.mean_age
print('attempting to grab ... ./saved_model_3D_UNET_Dropout/iteration_'+str(self.iteration_restored))
saver_grabber = tf.train.Saver()
saver_grabber.restore(sess, tf.train.latest_checkpoint('./saved_model_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)))
###################################################
### Whole 3D Brain scan Image Regressions #########
###################################################
#################################################################################
### if Image size is not divizikbila by patch_size we need to do some padding ###
#################################################################################
cmd = 'mkdir -p ./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)
os.system(cmd)
#subproscess.call(["mkdir", "-p","./sanity_checks_testing/iteration_'+str(i)"])
for _ in range(len(X_testing.keys())):
ROI_end_points = defaultdict()
ROI_end_points[0] = [np.min(indices_X), np.max(indices_X)]
ROI_end_points[1] = [np.min(indices_Y), np.max(indices_Y)]
ROI_end_points[2] = [np.min(indices_Z), np.max(indices_Z)]
#######################################################################
####### we are iterating over brain scans in the testing set now ######
#######################################################################
print('*******************************')
print('we are at subjects num '+str(_))
print('********************************')
current_image = X_testing[_]
current_gender = gender_testing[_]
current_name = X_testing_names[_]
#### We pad each brain scans so that we can take non-overlapping cubic blocks over it #####
shape_of_data = X_testing[_].shape
#current_mask = np.logical_not(np.equal(current_image,np.zeros_like(current_image)))
current_label = Y_testing[_]
size_cube_input1 = self.size_cube_input//2
size_cube_output1 = self.size_cube_output//2
size_cube_input2 = self.size_cube_input - size_cube_input1
size_cube_output2 = self.size_cube_output - size_cube_output1
print('size of the semi cubes')
print(size_cube_input1)
print(size_cube_input2)
print(size_cube_output1)
print(size_cube_output2)
'''
patches, patches_labels = extract_3D_cubes_input_seg_regression(input_image=current_image, output_image = current_label, gender_image = current_gender,
semi_block_size_input1 = size_cube_input1, semi_block_size_output1 = size_cube_output1,
semi_block_size_input2 = size_cube_input2, semi_block_size_output2 = size_cube_output2, dim_output = self.dim_output)
'''
patches, patches_labels, shape_of_ROI_data, mask_output_space = extract_3D_cubes_input_seg_regression_ROI_bound(input_image = current_image,
output_scalar = current_label,
gender_image = current_gender, semi_block_size_input1 = size_cube_input1,
semi_block_size_output1 = size_cube_output1,
semi_block_size_input2 = size_cube_input2, semi_block_size_output2 = size_cube_output2,
dim_output = self.dim_output, ROI_end_points = ROI_end_points, mask = mask)
#### get labels non-overlapping patches ####
print('size of what we got from custom made non-overlapping 3D cuube extraction')
print(patches.shape)
print(patches_labels.shape)
num_iterate_over = patches.shape[0]
num_batches = num_iterate_over // self.num_subjects
lista_batches = [np.arange(kkt*self.num_subjects,(kkt+1)*self.num_subjects) for kkt in range(num_batches-1)]
lista_batches.append(np.arange((num_batches-1)*self.num_subjects, num_iterate_over))
predictions_testing_np = []
##############################################################################################
####### Forward Monte Carlo Samples to get a better picture of epistemic uncertainty ########
##############################################################################################
num_MC_samples = 25
t1 = time.time()
list_samples_predictions = []
for plm_MC in range(num_MC_samples):
predictions_testing_now = []
for i_batch in range(num_batches):
predictions_testing_now_now= sess.run(predictions_testing,
feed_dict={X_test:patches[lista_batches[i_batch]], Y_test:patches_labels[lista_batches[i_batch]]})
predictions_testing_now.append(predictions_testing_now_now)
predictions_testing_now = np.concatenate(predictions_testing_now, axis=0)
list_samples_predictions.append(predictions_testing_now)
t2 = time.time()
print('how much time it takes per subject')
timer(t1,t2)
list_samples_predictions = np.stack(list_samples_predictions)
mean_segmentation = np.mean(list_samples_predictions, axis=0)
epistemic_variance_naive = np.var(list_samples_predictions, axis=0)
#epistemic_variance_naive = epistemic_variance_naive.reshape(epistemic_variance_naive.shape[:4])
shape_of_data_after_padding = shape_of_ROI_data[:3]
mean_segmentation = uncubify(mean_segmentation[...,0], (shape_of_data_after_padding[0],
shape_of_data_after_padding[1], shape_of_data_after_padding[2]))
epistemic_variance_naive = uncubify(epistemic_variance_naive[...,0], (shape_of_data_after_padding[0],
shape_of_data_after_padding[1], shape_of_data_after_padding[2]))
print(mean_segmentation.shape)
print(epistemic_variance_naive.shape)
cmd='mkdir -p ./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name
os.system(cmd)
text_de_scris='chronological age : '+str(Y_testing[_])
with open('./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/details.txt','w') as f:
f.write(text_de_scris)
###################################
####### Sampled Segmentations #####
###################################
cmd='mkdir -p ./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/sampled_seg'
os.system(cmd)
mask_output_space = mask_output_space.reshape((-1, ))
mask_output_space = np.array(mask_output_space, dtype=bool)
mean_segmentation = mean_segmentation.reshape((-1, ))
#predictions_testing_np = predictions_testing_np[current_mask]
whole_brain_segmentation = np.zeros((121*145*121, ))
whole_brain_segmentation[mask.reshape((-1,)) == 1] = mean_segmentation[mask_output_space]
whole_brain_segmentation = whole_brain_segmentation.reshape((121, 145, 121))
img = nib.Nifti1Image(whole_brain_segmentation, affine)
nib.save(img,'./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/sampled_seg'+'/segmentation.nii.gz' )
####################################
####### Uncertainties ##############
####################################
cmd='mkdir -p ./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/uncertainty'
os.system(cmd)
whole_brain_variance = np.zeros((121*145*121, ))
epistemic_variance_naive = epistemic_variance_naive.reshape((-1,))
whole_brain_variance[mask.reshape((-1,)) == 1.0] = epistemic_variance_naive[mask_output_space]
whole_brain_variance = whole_brain_variance.reshape(121, 145, 121)
img = nib.Nifti1Image(whole_brain_variance, affine)
nib.save(img,'./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/uncertainty'+'/epistemic_uncertainty.nii.gz' )
####################################
####### BRAIN-PAD ##################
####################################
cmd='mkdir -p ./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/brain_pad'
os.system(cmd)
whole_brain_brain_pad = np.zeros((121*145*121, ))
mean_segmentation = mean_segmentation.reshape((-1,))
#predictions_testing_np = predictions_testing_np[current_mask]
brain_pad = mean_segmentation - Y_testing[_]
whole_brain_brain_pad[mask.reshape((-1,))==1.0] = brain_pad[mask_output_space]
whole_brain_brain_pad = whole_brain_brain_pad.reshape(121,145,121)
img = nib.Nifti1Image(whole_brain_brain_pad, affine)
nib.save(img,'./whole_segmentations_'+str(dataset_name)+'_3D_UNET_Dropout/iteration_'+str(self.iteration_restored)+'/'+current_name+'/brain_pad'+'/brain_pad.nii.gz' )