forked from senticnet-ZXL/sentiment-analysis-with-WSD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
subst_model.py
163 lines (137 loc) · 9.38 KB
/
subst_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import itertools
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
class Subst_model(nn.Module):
def __init__(self, sentence_encoder, tokenizer, device, prompt_tau=0.05, dis_method="euclidean", candidate_max_length=50):
nn.Module.__init__(self)
self.sentence_encoder = sentence_encoder
self.tokenizer = tokenizer
self.device = device
self.prompt_tau = prompt_tau
self.dis_method = dis_method
self.candidate_max_length = candidate_max_length
self.dropout = nn.Dropout(p=0.5)
# self.num_class = 2
# self.metaphor_layer = nn.Linear(1024, self.num_class)
# self.metaphor_ignore_index = 2
# self.metaphor_loss = nn.CrossEntropyLoss(ignore_index=self.metaphor_ignore_index,
# reduction="sum", weight=torch.FloatTensor([1,10]).to(self.device))
self.prompt_loss = nn.CrossEntropyLoss()
self.prompt_loss_finetune = nn.CrossEntropyLoss(reduction="none")
def __dist__(self, x, y, dim=-1, tau=0.05, method="euclidean"):
x = x.unsqueeze(1)
if method is None:
method = self.method
if method == 'dot':
sim = (x * y).sum(dim)/ tau
elif method == 'euclidean':
sim = -(torch.pow(x - y, 2)).sum(dim) / tau
elif method == 'cosine':
sim = torch.abs(F.cosine_similarity(x, y, dim=dim) / tau)
elif method == 'KL':
kl_mean_1 = F.kl_div(F.log_softmax(x, dim=-1), F.softmax(y, dim=-1), reduction='sum')
kl_mean_2 = F.kl_div(F.log_softmax(y, dim=-1), F.softmax(x, dim=-1), reduction='sum')
sim = (kl_mean_1 + kl_mean_2)/2
return sim
def get_prompt_emb(self, last_hidden_state, data_item):
batch_metaphor_embed = []
batch_prompt_embed = []
for batch_index, each_hidden in enumerate(last_hidden_state):
sent = data_item["sent"][batch_index]
metaphor_index = data_item["target_position"][batch_index]
# metaphor_emb = torch.sum(last_hidden_state[batch_index][metaphor_index], dim=0)
metaphor_emb = last_hidden_state[batch_index][metaphor_index]
batch_metaphor_embed.append(metaphor_emb)
prompt_word_index = data_item["subst_word_index"][batch_index]
prompt_word_emb = torch.stack([torch.sum(last_hidden_state[batch_index][i], dim=0) for i in prompt_word_index])
# if len(prompt_word_emb) < self.candidate_max_length:
# prompt_word_emb += [torch.tensor(0.)] * (self.candidate_max_length - len(prompt_word_emb))
# batch_prompt_embed.append(torch.stack(prompt_word_emb))
batch_prompt_embed.append(prompt_word_emb)
return torch.stack(batch_metaphor_embed), torch.stack(batch_prompt_embed)
def get_head_mask(self, input_id, data_item):
"""head_mask = [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
head_mask = []
for batch_index in range(input_id.size(0)):
tmp = torch.zeros(input_id.size(1), input_id.size(1)).long().to(self.device)
sent_len = data_item["subst_S_index"][batch_index]
zero_matrix = torch.LongTensor([list(range(sent_len, input_id.size(-1))) for i in range(sent_len)])
one_sent_mask = torch.ones(input_id.size(1), input_id.size(1)).scatter_(1, zero_matrix, 0)
head_mask.append(one_sent_mask)
head_mask = torch.stack(head_mask).unsqueeze(0).unsqueeze(2)
head_mask = head_mask.repeat(self.sentence_encoder.config.num_hidden_layers, 1, self.sentence_encoder.config.num_attention_heads, 1, 1)
return head_mask.to(self.device)
def forward(self, data_item, finetune=False):
input_id = data_item["sent"]
attention_mask = (input_id != self.tokenizer.pad_token_id).bool().to(self.device)
temp_bz, temp_sent_len= input_id.size(0), input_id.size(1)
position_ids = torch.LongTensor(list(range(temp_sent_len))).repeat(temp_bz, 1).to(self.device)
msk = torch.arange(temp_sent_len).unsqueeze(0).expand(temp_bz, temp_sent_len).to(self.device) >= data_item["subst_S_index"].unsqueeze(1).long()
position_ids[msk] = data_item["subst_S_index"].unsqueeze(1).expand(temp_bz, temp_sent_len)[msk]
# head_mask = self.get_head_mask(input_id, data_item)
# encoder_output = self.sentence_encoder(input_id, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask)
encoder_output = self.sentence_encoder(input_id, attention_mask=attention_mask, position_ids=position_ids)
last_hidden_state = encoder_output["last_hidden_state"]
last_hidden_state = self.dropout(last_hidden_state)
# Task 1
# label each word in the sentence as metaphor or non-metaphor word
# metaphor_logits = self.metaphor_layer(last_hidden_state)
# metaphor_pred = torch.argmax(metaphor_logits, dim=-1)
# metaphor_loss = self.metaphor_loss(metaphor_logits.reshape(-1,2), data_item["metaphor_label"].view(-1)) * self.args.metaphor_loss_weight
# metaphor_pred = torch.zeros((input_id.size(0), input_id.size(1))).to(self.device)
# metaphor_loss = torch.zeros(1).to(self.device)
# Task 2
# label each prompt word as synonym or non-synonym
# batch_metaphor_embed: (bsz); batch_prompt_embed: (bsz, num_of_prompt_word)
batch_metaphor_embed, batch_prompt_embed = self.get_prompt_emb(last_hidden_state, data_item)
prompt_logits = self.__dist__(batch_metaphor_embed, batch_prompt_embed, tau=self.prompt_tau, method=self.dis_method)
prompt_pred_idx = torch.argmax(prompt_logits, dim=-1)
prompt_pred = torch.zeros(prompt_pred_idx.size(0), self.candidate_max_length).to(self.device).scatter_(1, prompt_pred_idx.unsqueeze(1), 1)
# changed prompt_pred to list of words
# prompt_pred = []
# for sent_idx, cand_idx in enumerate(prompt_pred_idx):
# if cand_idx >= len(data_item['candidates'][sent_idx]):
# prompt_pred.append(self.tokenizer.pad_token_id)
# else:
# prompt_pred.append(data_item['candidates'][sent_idx][cand_idx])
if finetune:
prompt_loss = self.prompt_loss_finetune(prompt_logits, data_item["subst_label"])
else:
prompt_loss = self.prompt_loss(prompt_logits, data_item["subst_label"]) #[:,:prompt_logits.size(-1)]) #* self.args.prompt_loss_weight
# prompt_pred = torch.zeros((metaphor_logits.size(0), self.args.wrong_word_num+1)).to(self.device)
# prompt_loss = torch.zeros(1).to(self.device)
return prompt_loss.view(-1), prompt_pred
def predict(self, data_item, num_of_sub=3):
# generate n substitution candidates
input_id = data_item["sent"]
attention_mask = (input_id != self.tokenizer.pad_token_id).bool().to(self.device)
temp_bz, temp_sent_len= input_id.size(0), input_id.size(1)
position_ids = torch.LongTensor(list(range(temp_sent_len))).repeat(temp_bz, 1).to(self.device)
msk = torch.arange(temp_sent_len).unsqueeze(0).expand(temp_bz, temp_sent_len).to(self.device) >= data_item["subst_S_index"].unsqueeze(1).long()
position_ids[msk] = data_item["subst_S_index"].unsqueeze(1).expand(temp_bz, temp_sent_len)[msk]
# head_mask = self.get_head_mask(input_id, data_item)
# encoder_output = self.sentence_encoder(input_id, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask)
encoder_output = self.sentence_encoder(input_id, attention_mask=attention_mask, position_ids=position_ids)
last_hidden_state = encoder_output["last_hidden_state"]
last_hidden_state = self.dropout(last_hidden_state)
batch_metaphor_embed, batch_prompt_embed = self.get_prompt_emb(last_hidden_state, data_item)
prompt_logits = self.__dist__(batch_metaphor_embed, batch_prompt_embed, tau=self.prompt_tau, method=self.dis_method)
prompt_pred_best = torch.argmax(prompt_logits, dim=-1) # (bsz)
_, prompt_pred = torch.topk(prompt_logits, num_of_sub, dim=-1) # (bsz, num_of_sub)
# prompt_pred_onehot = torch.zeros(prompt_pred.size(0), self.candidate_max_length).to(self.device).scatter_(1, prompt_pred.unsqueeze(1), 1)
prompt_pred_idx = torch.add(prompt_pred, data_item['subst_S_index'].unsqueeze(1).expand(prompt_pred.size()))
# changed prompt_pred to list of words
# prompt_pred_topk = torch.zeros(prompt_pred.size(0), num_of_sub).to(self.device)
pred_best = []
pred_topk = []
for sentence_idx, words in enumerate(data_item['candidates']):
pred_best.append(torch.tensor(words[prompt_pred_best[sentence_idx]], device=self.device).long())
# prompt_pred_best[sentence_idx] = sentence[data_item['subst_S_index'][sentence_idx] + prompt_pred_best[sentence_idx]]
temp_pred_topk = []
for count, prompt_idx in enumerate(prompt_pred[sentence_idx]):
# prompt_pred_topk[sentence_idx][count] = sentence[data_item['subst_S_index'][sentence_idx] + prompt_idx]
temp_pred_topk.append(torch.tensor(words[prompt_idx], device=self.device).long())
pred_topk.append(temp_pred_topk)
return pred_topk, pred_best