-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathABSA-emb-gpu-final-newarch3.py
509 lines (429 loc) · 21.5 KB
/
ABSA-emb-gpu-final-newarch3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import numpy as np
import cPickle
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from keras.utils import to_categorical
from numpy.random import shuffle
import sys
import os
import csv
import argparse
import time
np.random.seed(1234)
# nb_words = 500000000
# MAX_SEQUENCE_LENGTH=77
# MAX_ASPECTS=13
# MAX_LEN_ASPECT=5
# EMBEDDING_DIM = 300
# HIDDEN_DIM = 300
# OUTPUT_DIM = 350
# HOP_SIZE = 15
# BATCH_SIZE = 50
# NB_EPOCH = 50
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='does not use GPU')
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='learning rate')
parser.add_argument('--l2', type=float, default=0.0001, metavar='L2',
help='L2 regularization weight')
parser.add_argument('--batch-size', type=int, default=25, metavar='BS',
help='batch size')
parser.add_argument('--epochs', type=int, default=30, metavar='E',
help='number of epochs')
parser.add_argument('--hops', type=int, default=10, metavar='H',
help='number of hops')
parser.add_argument('--hidden-size', type=int, default=400, metavar='HS',
help='hidden size')
parser.add_argument('--output-size', type=int, default=400, metavar='OS',
help='output size')
parser.add_argument('--dropout-p', type=float, default=0.5, metavar='DO1',
help='embedding dropout')
parser.add_argument('--dropout-lstm', type=float, default=0.1, metavar='DO2',
help='lstm dropout')
parser.add_argument('--dataset', default='Restaurants', metavar='D',
help='Laptop or Restaurants')
args = parser.parse_args()
print args
HIDDEN_DIM = args.hidden_size
OUTPUT_DIM = args.output_size
HOP_SIZE = args.hops
BATCH_SIZE = args.batch_size
NB_EPOCH = args.epochs
nb_words = 500000000
MAX_SEQUENCE_LENGTH = 77 if args.dataset=='Laptop' else 69
MAX_ASPECTS = 13
MAX_LEN_ASPECT = 5 if args.dataset=='Laptop' else 19
EMBEDDING_DIM = 300
class PreProcessing():
def __init__(self, tr_data, te_data, tokenizer, batch_size):
self.tag_to_ix = {"positive": 0, "negative": 1, "neutral": 2}
self.tokenizer = tokenizer # Tokenizer(num_words=nb_words)
self.sents=zip(*tr_data)[0]
self.sents1=zip(*te_data)[0]
self.labels=zip(*tr_data)[3]
self.aspects=zip(*tr_data)[1]
self.aspect=zip(*tr_data)[2]
self.batch_size=batch_size
def prepare_sequence(self, seq, to_ix):
return [to_ix[w] for w in seq]
def keras_data_prepare(self, fit=True):
if fit:
self.tokenizer.fit_on_texts(self.sents+self.sents1)
sequences = self.tokenizer.texts_to_sequences(self.sents)
data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
return data
def return_vars(self):
return self.tokenizer
def prepare_data(self, data, batch_id, word_embeddings):
aspect_sequence=[]
limit = [batch_id*self.batch_size, (batch_id+1)*self.batch_size]
for item in self.aspects[limit[0]:limit[1]]:
temp=self.tokenizer.texts_to_sequences(item)
aspect_sequence.append(temp)
aspect_ = self.tokenizer.texts_to_sequences(list(self.aspect[limit[0]:limit[1]]))
train_temp=[]
j=0
for datam in data[limit[0]:limit[1]]:
train_temp.append([datam,aspect_sequence[j],aspect_[j],self.labels[limit[0]:limit[1]][j]])
j=j+1
training_data_x0=[]
training_data_x1=[]
training_data_y=[]
attention_mat2 =[]
attention_mat = []
for item1 in train_temp:
sent, aspects, aspect, sentiment = item1[0], item1[1], item1[2], item1[3]
att = []
for i in range(0,len(sent)):
if sent[i] == 0:
att.append(0)
else:
att.append(1)
att_tensor = autograd.Variable(torch.FloatTensor(att) if not args.cuda else torch.cuda.FloatTensor(att),requires_grad=False)
temp_mask_sent = att_tensor.view(att_tensor.size()[0],-1).expand(-1, 2*EMBEDDING_DIM)
att_tensor = att_tensor.unsqueeze(0)
tensor = torch.LongTensor(sent) if not args.cuda else torch.cuda.LongTensor(sent)
sent1=autograd.Variable(tensor)
aspects1=[]
for item in aspects:
temp = torch.LongTensor(item) if not args.cuda else torch.cuda.LongTensor(item)
temp = autograd.Variable(temp)
temp = word_embeddings(temp)
temp = torch.mean(temp,dim=0)
aspects1.append(temp)
aspect = torch.LongTensor(aspect) if not args.cuda else torch.cuda.LongTensor(aspect)
aspect = autograd.Variable(aspect)
label=self.prepare_sequence(sentiment, self.tag_to_ix)
embeds=word_embeddings(sent1)
#aspect = torch.LongTensor(aspect)
#aspect = autograd.Variable(aspect)
aspect1= word_embeddings(aspect)
aspect1= torch.mean(aspect1,dim=0)
aspect1 = aspect1.expand(len(sent),-1)
sepr = []
att2 = []
for i in range(0,MAX_ASPECTS-len(aspects)):
sepr.append(autograd.Variable(torch.zeros((MAX_SEQUENCE_LENGTH,2*EMBEDDING_DIM)).type(ftype).unsqueeze(0)))
att2.append(0)
for item in aspects1:
item = item.expand(len(sent),-1)
sepr.append(torch.mul(torch.cat([embeds,item],dim=1),temp_mask_sent).unsqueeze(0))
att2.append(1)
aspect1 = torch.mul(torch.cat([embeds,aspect1],dim=1),temp_mask_sent)
att2_tensor = autograd.Variable(torch.FloatTensor(att2) if not args.cuda else torch.cuda.FloatTensor(att2),requires_grad=False).unsqueeze(0)
sepr_tensor=torch.cat(sepr,dim=0)
sepr_tensor = sepr_tensor.unsqueeze(0)
training_data_x0.append(sepr_tensor)
training_data_x1.append(aspect1.unsqueeze(0))
training_data_y.append(label)
attention_mat2.append(att2_tensor)
attention_mat.append(att_tensor)
att2_var = torch.cat(attention_mat2,dim=0)
att_var = torch.cat(attention_mat, dim =0 )
return torch.cat(training_data_x0,dim=0), torch.cat(training_data_x1,dim=0), autograd.Variable(torch.LongTensor(to_categorical(training_data_y,3)) if not args.cuda else torch.cuda.LongTensor(to_categorical(training_data_y,3))),att2_var, att_var
class AttnRNN(nn.Module):
def __init__(self, hop_size, batch_size, input_size, sent_size, output_size,
dropout_p=args.dropout_p, dropout_lstm = args.dropout_lstm,
max_length=MAX_SEQUENCE_LENGTH):
super(AttnRNN, self).__init__()
self.hop_size = hop_size
self.batch_size = batch_size
self.input_size = input_size
self.output_size = output_size
self.sent_size = sent_size
self.dropout_p = dropout_p
self.dropout_lstm = dropout_lstm
self.max_length = max_length
self.hidden_sentence_gru = self.init_hidden2(self.batch_size)
self.hidden_aspect_gru = self.init_hidden(self.batch_size)
self.hidden_aspect_write_gru=self.init_hidden(self.batch_size)
#self.hidden_aspect_repr_gru = self.init_aspect_hidden(self.batch_size)
self.sentence_gru = nn.GRU(self.input_size*2, self.sent_size)
self.aspect_gru = nn.GRU(self.sent_size, self.output_size)
self.aspect_write_gru = nn.GRU(self.output_size, self.output_size)
# self.aspect_write_gru = nn.GRU(self.output_size, self.output_size/2,
# bidirectional=True)
#self.aspect_repr_gru = nn.GRU(self.input_size*2, self.sent_size)
self.dropout = nn.Dropout(self.dropout_p)
self.dropout2 = nn.Dropout(self.dropout_lstm)
self.attn = nn.Linear(self.sent_size, 1)
self.attn2 = nn.Linear(1, 1)
self.affine = nn.Linear(self.output_size,3)
self.dimproj = nn.Linear(self.sent_size, self.output_size)
def forward(self, sents, aspects, attention_mat1, attention_mat2, batch_size):
sents=sents.permute(1,2,0,3) # -> (aspect, seq, batch, embed*2)
outputs = []
alphas=[]
for sent_asp in sents:
embedded = self.dropout(sent_asp)
output, hidden_sentence_gru = self.sentence_gru(embedded, self.hidden_sentence_gru)
#print attention_mat1.size()
temp_attention_mat1 = attention_mat1.view(attention_mat1.size()[0],attention_mat1.size()[1],1).expand(-1,-1,output.size()[2])
#print temp_attention_mat1.size()
#sys.exit(1)
output = torch.mul(output.permute(1,0,2),temp_attention_mat1)
output = self.dropout2(output)
#print output.size()
# sys.exit(1)
attn_weights = F.softmax(
self.attn(output.permute(1,0,2)), dim=0)
#print attn_weights.size()
#print attention_mat1.size()
#sys.exit(1)
masked_attn_weights = torch.mul(attn_weights.squeeze().permute(1,0),attention_mat1)
#print masked_attn_weights.size()
_sums = masked_attn_weights.sum(-1).unsqueeze(1).expand(-1,masked_attn_weights.size()[1])
#print _sums.size()
attentions = masked_attn_weights.div(_sums).unsqueeze(1).permute(2,0,1)
alphas.append(attentions.permute(1,2,0).unsqueeze(0))
#print attentions.permute(1,0,2).squeeze()[47].sum()
#print attn_weights.permute(1,0,2)
attn_applied = torch.bmm(attentions.permute(1,2,0),
output).squeeze()
output = F.relu(attn_applied)
outputs.append(output.unsqueeze(0))
aspec_rep = torch.cat(outputs, dim=0)
output, hidden_aspect_gru = self.aspect_gru(aspec_rep,self.hidden_aspect_gru)
temp_attention_mat2 = attention_mat2.view(attention_mat2.size()[0],attention_mat2.size()[1],1).expand(-1,-1,output.size()[2])
output = torch.mul(output.permute(1,0,2),temp_attention_mat2)
output = self.dropout2(output)
aspects = aspects.permute(1,0,2)
outputa_,hida_ = self.sentence_gru(aspects,self.hidden_sentence_gru)
temp_attention_mat3 = attention_mat1.view(attention_mat1.size()[0],attention_mat1.size()[1],1).expand(-1,-1,outputa_.size()[2])
outputa_ = torch.mul(outputa_.permute(1,0,2),temp_attention_mat3)
attn_weights_ = F.softmax(
self.attn(outputa_.permute(1,0,2)), dim=0)
masked_attn_weights_ = torch.mul(attn_weights_.squeeze().permute(1,0),attention_mat1)
_sums_ = masked_attn_weights_.sum(-1).unsqueeze(1).expand(-1,masked_attn_weights_.size()[1])
attentions_ = masked_attn_weights_.div(_sums_).unsqueeze(1).permute(2,0,1)
attn_applied_ = torch.bmm(attentions_.permute(1,2,0),
outputa_).squeeze()
if self.sent_size == self.output_size:
asp_proj = attn_applied_.unsqueeze(1)
else:
asp_proj = self.dimproj(attn_applied_).unsqueeze(1)
#print "Output size,", output.size()
#print "Aspect proj size,", asp_proj.size()
output=output.permute(0,2,1)
betas = []
for i in range(0,self.hop_size):
match = torch.bmm(asp_proj,output).permute(2,0,1)
attn_weights2 = F.softmax(
self.attn2(match), dim=0)
#print attn_weights
self.hidden_aspect_write_gru=self.init_hidden(batch_size)
output_w, hidden_aspect_write_gru = \
self.aspect_write_gru(output.permute(2,0,1),self.hidden_aspect_write_gru)
output_w = torch.mul(output_w.permute(1,0,2),temp_attention_mat2)
output_w = self.dropout2(output_w)
masked_attn_weights2 = torch.mul(attn_weights2.squeeze().permute(1,0),attention_mat2)
#print masked_attn_weights.size()
_sums2 = masked_attn_weights2.sum(-1).unsqueeze(1).expand(-1,masked_attn_weights2.size()[1])
#print _sums.size()
attentions2 = masked_attn_weights2.div(_sums2).unsqueeze(1).permute(2,0,1)
#print output_w.size()
#print attn_weights.size()
#print attentions2.squeeze().permute(1,0)[0].sum()
attn_applied = torch.bmm(attentions2.permute(1,2,0), output_w.permute(0,1,2)).squeeze()
betas.append(attentions2.permute(1,2,0))
#print "attn_applied size", attn_applied.size()
query = asp_proj.view(asp_proj.size()[0],asp_proj.size()[2])
#print "query size", query.size()
final_output = torch.add(attn_applied, query)
#print final_output.size()
final_output = F.relu(final_output)
asp_proj = final_output.unsqueeze(1)
#output = output_w.permute(1,2,0)
output = output_w.permute(0,2,1)
#print"output size final-----", output.size()
asp_proj = F.log_softmax(self.affine(asp_proj.squeeze()),dim=1)
#asp_proj = self.affine(asp_proj.squeeze())
return asp_proj, betas, torch.cat(alphas,0)
def init_hidden(self, batch_size):
return autograd.Variable(torch.zeros(1, batch_size,
self.output_size).type(ftype))
def init_hidden_memnet(self, batch_size):
return autograd.Variable(torch.zeros(2, batch_size,
self.output_size/2).type(ftype))
# def init_aspect_hidden(self, batch_size):
# return autograd.Variable(torch.zeros(1, batch_size, self.sent_size))
def init_hidden2(self, batch_size):
return autograd.Variable(torch.zeros(1, batch_size,
self.sent_size).type(ftype))
def Glove(GLOVE_DIR):
embeddings_index = {}
f = open(os.path.join(GLOVE_DIR, 'glove.840B.300d.txt'))
#f = open(os.path.join(GLOVE_DIR, 'ex.txt'))
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
return embeddings_index
def index_word_embeddings(word_index, embeddings_index):
embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
def get_accuracy(truth, pred):
assert len(truth)==len(pred)
right = 0
for i in range(len(truth)):
if truth[i]==pred[i]:
right += 1.0
return right/len(truth)
def train(onea):
tokenizer = Tokenizer(num_words=nb_words)
prep = PreProcessing(training_data,test_data,tokenizer,BATCH_SIZE)
data = prep.keras_data_prepare()
we=Glove(GLOVE_DIR="/home/navonil/")
ei=index_word_embeddings(tokenizer.word_index,we)
word_embeddings = nn.Embedding(len(tokenizer.word_index)+1, EMBEDDING_DIM,padding_idx=0)
word_embeddings.weight = nn.Parameter(torch.FloatTensor(ei) if not args.cuda else torch.cuda.FloatTensor(ei))
word_embeddings.weight.requires_grad = False
print "Embeddings loaded...."
model = AttnRNN(HOP_SIZE, BATCH_SIZE, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM)
if args.cuda:
model.cuda()
loss_function = nn.NLLLoss()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, [x for x in
model.parameters()] + [word_embeddings.weight]), lr = args.lr,
weight_decay = args.l2)
batch_count = int(np.ceil(len(training_data)/float(BATCH_SIZE)))
for i in range(NB_EPOCH):
start_time = time.time()
loss_tot = []
true_label=[]
pred_res=[]
model.train()
for batch_id in range(batch_count):
optimizer.zero_grad()
bdata_x0, bdata_x1, bdata_y, attention_mat2, attention_mat1 = prep.prepare_data(data, batch_id, word_embeddings)
model.hidden_sentence_gru = model.init_hidden2(bdata_x0.size()[0])
model.hidden_aspect_gru = model.init_hidden(bdata_x0.size()[0])
model.hidden_aspect_write_gru = model.init_hidden(bdata_x0.size()[0])
#model.hidden_aspect_repr_gru = model.init_aspect_hidden(bdata_x0.size()[0])
prediction, _, _ = model(bdata_x0,bdata_x1, attention_mat1, attention_mat2, bdata_x0.size()[0])
loss = loss_function(prediction, torch.max(bdata_y, 1)[1])
# print "Loss ", i, loss.data[0]
loss_tot.append(loss.data[0])
pred_label = prediction.data.max(1)[1].cpu().numpy()
pred_res += [x for x in pred_label]
true_data = torch.max(bdata_y, 1)[1].cpu()
true_label+= [x for x in true_data.data]
loss.backward()
# print word_embeddings.weight.grad
optimizer.step()
preds,true,test_loss = test(test_data, model, tokenizer,
word_embeddings, loss_function, i,onea)
# for k in range(1,39):
# print '%s, %s, %d, %d' % (test_data[-k][0],test_data[-k][2],true[-k],preds[-k])
print 'Epoch %d train_loss %.4f train_acc %.2f test_loss %.4f test_acc %.2f time %.2f' % (i+1, np.mean(loss_tot), accuracy(pred_res, true_label), test_loss, accuracy(preds,true), time.time()-start_time)
# import ipdb;ipdb.set_trace()
mul = set(range(len(true)))-set(onea)
print 'single_aspect %.2f mul_aspect %.2f' % (accuracy([preds[idx] for idx in onea],[true[idx] for idx in onea]), accuracy([preds[idx] for idx in mul],[true[idx] for idx in mul]))
return model, tokenizer, word_embeddings
def test(test_data, model, tokenizer, word_embeddings, loss_function, epoch, onea):
prep = PreProcessing(test_data,training_data,tokenizer,BATCH_SIZE)
data = prep.keras_data_prepare(False)
model.eval()
true_label=[]
loss_tot = []
pred_res=[]
batch_count = int(np.ceil(len(test_data)/float(BATCH_SIZE)))
# print batch_count, len(test_data)
betas = []
alphas = []
for batch_id in range(batch_count):
bdata_x0, bdata_x1, bdata_y, attention_mat2, attention_mat1 = prep.prepare_data(data, batch_id, word_embeddings)
model.hidden_sentence_gru = model.init_hidden2(bdata_x0.size()[0])
model.hidden_aspect_gru = model.init_hidden(bdata_x0.size()[0])
model.hidden_aspect_write_gru = model.init_hidden(bdata_x0.size()[0])
#model.hidden_aspect_repr_gru = model.init_aspect_hidden(bdata_x0.size()[0])
preds, beta , alpha = model(bdata_x0,bdata_x1, attention_mat1, attention_mat2, bdata_x0.size()[0])
betas +=[dat.data.cpu().numpy() for dat in beta]
alphas.append(alpha.data.cpu().numpy())
loss = loss_function(preds, torch.max(bdata_y, 1)[1])
loss_tot.append(loss.data[0])
pred_label = preds.data.max(1)[1].cpu().numpy()
pred_res += [x for x in pred_label]
true_data = torch.max(bdata_y, 1)[1].cpu()
true_label+= [x for x in true_data.data]
# with open('betas_%d.p'%epoch,'wb') as fp:
# cPickle.dump(betas,fp)
# with open('alphas_%d.p'%epoch,'wb') as fp:
# cPickle.dump(alphas,fp)
return pred_res, true_label, np.mean(loss_tot)
def csv_reader(file):
data =[]
with open(file, 'rb') as csvfile:
aspectreader = csv.reader(csvfile, delimiter=',')
for row in aspectreader:
sent = row[0].lower()
nb_aspects = int(row[1])
aspects = [x.replace("'","").replace('[',"").replace("\"","").replace(']',"").strip().lower() for x in row[2].split(",")]
sentiments = [x.strip().replace("'","").replace('[',"").replace("\"","").replace(']',"").lower() for x in row[3].split(",")]
for i in range(0,nb_aspects):
datam = (sent,aspects , aspects[i], [sentiments[i]])
data.append(datam)
return data
def accuracy(preds, true):
return sum(1 for x,y in zip(preds,true) if x == y) / float(len(preds))*100.
if __name__=='__main__':
# parser = argparse.ArgumentParser()
# parser.add_argument('--no-cuda', action='store_true', default=False,
# help='does not use GPU')
# parser.add_argument('--dataset', default='Laptop', metavar='D',
# help='Laptop or Restaurants')
# args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
print 'Running on GPU'
torch.cuda.manual_seed(1)
ftype = torch.cuda.FloatTensor
else:
print 'Running on CPU'
torch.manual_seed(1)
ftype = torch.FloatTensor
training_data = csv_reader('2014_'+args.dataset+'_train.csv')
test_data = csv_reader('2014_'+args.dataset+'_test.csv')
shuffle(training_data)
# print training_data[0]
# print np.max([len(x.split()) for x in zip(*training_data)[0]+zip(*test_data)[0]])
# print np.max([len(x.split()) for x in zip(*training_data)[2]+zip(*test_data)[2]])
# print np.max([len(x) for x in zip(*training_data)[1]+zip(*test_data)[1]])
# sys.exit(0)
onea = [i for i,(s,a,aa,l) in enumerate(test_data) if len(a)==1]
tonea = [i for i,(s,a,aa,l) in enumerate(training_data) if len(a)==1]
print len(onea),len(test_data)-len(onea)
print len(tonea),len(training_data)-len(tonea)
model, tokenizer, word_embeddings = train(onea)