This repository has been archived by the owner on May 19, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 261
/
Copy pathencoder.json
533 lines (533 loc) · 17.4 KB
/
encoder.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
[
{
"paper_title": "From Word Embeddings to Document Distances",
"paper_link": "http://jmlr.org/proceedings/papers/v37/kusnerb15.pdf",
"name": "Word Mover's Distance",
"code": [
{
"language": "C, Python",
"link": "https://github.com/mkusner/wmd",
"pretrained": false
}
],
"s2_paper_id": "2871f115e7a11c903258491c75d4171fac679344"
},
{
"paper_title": "Distributed Representations of Sentences and Documents",
"paper_link": "https://arxiv.org/abs/1405.4053",
"name": "Doc2Vec",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/inejc/paragraph-vectors",
"unofficial": true
},
{
"language": "Python",
"link": "https://github.com/jhlau/doc2vec",
"unofficial": true,
"pretrained": true
}
]
},
{
"paper_title": "Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models",
"paper_link": "https://arxiv.org/abs/1411.2539",
"name": "VSE",
"code": [
{
"language": "Theano",
"link": "https://github.com/ryankiros/visual-semantic-embedding"
},
{
"language": "Pytorch",
"link": "https://github.com/linxd5/VSE_Pytorch",
"unofficial": true,
"load_pretrained": true
}
]
},
{
"paper_title": "Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books",
"paper_link": "https://arxiv.org/abs/1506.06724",
"name": "SkipThought",
"code": [
{
"language": "Theano",
"link": "https://github.com/ryankiros/skip-thoughts"
},
{
"language": "TF",
"link": "https://github.com/tensorflow/models/tree/master/research/skip_thoughts",
"unofficial": true,
"pretrained": true
},
{
"language": "Pytorch, Torch",
"link": "https://github.com/Cadene/skip-thoughts.torch",
"unofficial": true,
"load_pretrained": true
}
]
},
{
"paper_title": "Order-Embeddings of Images and Language",
"paper_link": "https://arxiv.org/abs/1511.06361",
"name": "order-embedding",
"code": [
{
"language": "Theano",
"link": "https://github.com/ivendrov/order-embedding"
}
]
},
{
"paper_title": "Towards Universal Paraphrastic Sentence Embeddings",
"paper_link": "https://arxiv.org/abs/1511.08198",
"name": "ParagramPhrase",
"code": [
{
"language": "Theano",
"link": "https://github.com/jwieting/iclr2016"
}
]
},
{
"paper_title": "Learning Distributed Representations of Sentences from Unlabelled Data",
"paper_link": "https://arxiv.org/abs/1602.03483",
"name": "FastSent",
"code": [
{
"language": "Python",
"link": "https://github.com/fh295/SentenceRepresentation"
}
]
},
{
"paper_title": "Charagram: Embedding Words and Sentences via Character n-grams",
"paper_link": "https://arxiv.org/abs/1607.02789",
"name": "Charagram",
"code": [
{
"language": "Theano",
"link": "https://github.com/jwieting/charagram"
}
]
},
{
"paper_title": "Learning Generic Sentence Representations Using Convolutional Neural Networks",
"paper_link": "https://arxiv.org/abs/1611.07897",
"name": "ConvSent",
"code": [
{
"language": "Theano",
"link": "https://github.com/zhegan27/ConvSent",
"pretrained": false
}
]
},
{
"paper_title": "Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features",
"paper_link": "https://arxiv.org/abs/1703.02507",
"name": "Sent2Vec",
"code": [
{
"language": "C++",
"link": "https://github.com/epfml/sent2vec"
}
]
},
{
"paper_title": "Learning to Generate Reviews and Discovering Sentiment",
"paper_link": "https://arxiv.org/abs/1704.01444",
"name": "Sentiment Neuron",
"code": [
{
"language": "TF",
"link": "https://github.com/openai/generating-reviews-discovering-sentiment"
},
{
"language": "Pytorch",
"link": "https://github.com/guillitte/pytorch-sentiment-neuron",
"unofficial": true,
"load_pretrained": true
},
{
"language": "Pytorch",
"link": "https://github.com/NVIDIA/sentiment-discovery",
"unofficial": true,
"pretrained": true
}
]
},
{
"paper_title": "Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings",
"paper_link": "https://arxiv.org/abs/1705.00364",
"name": "GRAN",
"code": [
{
"language": "Theano",
"link": "https://github.com/jwieting/acl2017"
}
]
},
{
"paper_title": "Supervised Learning of Universal Sentence Representations from Natural Language Inference Data",
"paper_link": "https://arxiv.org/abs/1705.02364",
"name": "InferSent",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/facebookresearch/InferSent"
}
]
},
{
"paper_title": "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives",
"paper_link": "https://arxiv.org/abs/1707.05612",
"name": "VSE++",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/fartashf/vsepp"
}
]
},
{
"paper_title": "Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm",
"paper_link": "https://arxiv.org/abs/1708.00524",
"name": "DeepMoji",
"code": [
{
"language": "Keras",
"link": "https://github.com/bfelbo/DeepMoji"
},
{
"language": "Pytorch",
"link": "https://github.com/huggingface/torchMoji",
"load_pretrained": true
}
]
},
{
"paper_title": "StarSpace: Embed All The Things!",
"paper_link": "https://arxiv.org/abs/1709.03856",
"name": "StarSpace",
"code": [
{
"language": "C++",
"link": "https://github.com/facebookresearch/StarSpace"
}
]
},
{
"paper_title": "DisSent: Learning Sentence Representations from Explicit Discourse Relations",
"paper_link": "https://arxiv.org/abs/1710.04334",
"name": "DisSent",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/windweller/DisExtract",
"email_for_pretrained": true
}
]
},
{
"paper_title": "Dual-Path Convolutional Image-Text Embedding with Instance Loss",
"paper_link": "https://arxiv.org/abs/1711.05535",
"name": "Image-Text-Embedding",
"code": [
{
"language": "Matlab",
"link": "https://github.com/layumi/Image-Text-Embedding"
}
]
},
{
"paper_title": "Pushing the Limits of Paraphrastic Sentence Embeddings with Millions of Machine Translations",
"paper_link": "https://arxiv.org/abs/1711.05732",
"name": "para-nmt",
"code": [
{
"language": "Theano",
"link": "https://github.com/jwieting/para-nmt-50m"
}
]
},
{
"paper_title": "An efficient framework for learning sentence representations",
"paper_link": "https://arxiv.org/abs/1803.02893",
"name": "Quick-Thought",
"code": [
{
"language": "TF",
"link": "https://github.com/lajanugen/S2V"
}
]
},
{
"paper_title": "Universal Sentence Encoder",
"paper_link": "https://arxiv.org/abs/1803.11175",
"name": "USE",
"code": [
{
"language": "TF-Hub",
"link": "https://tfhub.dev/google/universal-sentence-encoder-large/2",
"no_training_code": true
}
]
},
{
"paper_title": "Learning general purpose distributed sentence representations via large scale multi-task learning",
"paper_link": "https://arxiv.org/abs/1804.00079",
"name": "GenSen",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/Maluuba/gensen"
}
]
},
{
"paper_title": "End-Task Oriented Textual Entailment via Deep Explorations of Inter-Sentence Interactions",
"paper_link": "https://arxiv.org/abs/1804.08813",
"name": "DEISTE",
"code": [
{
"language": "Theano",
"link": "https://github.com/yinwenpeng/SciTail"
}
]
},
{
"paper_title": "Embedding Text in Hyperbolic Spaces",
"paper_link": "https://arxiv.org/abs/1806.04313",
"name": "HyperText",
"code": [
{
"language": "TF",
"link": "https://github.com/brain-research/hyperbolictext",
"pretrained": false
}
]
},
{
"paper_title": "Representation Learning with Contrastive Predictive Coding",
"paper_link": "https://arxiv.org/abs/1807.03748",
"name": "CPC",
"code": [
{
"language": "Keras",
"link": "https://github.com/davidtellez/contrastive-predictive-coding",
"unofficial": true
}
]
},
{
"paper_title": "Context Mover\u2019s Distance & Barycenters: Optimal transport of contexts for building representations",
"paper_link": "https://arxiv.org/abs/1808.09663",
"name": "CMD",
"code": [
{
"language": "Python",
"link": "https://github.com/context-mover/context-mover-distance-and-barycenters"
}
]
},
{
"paper_title": "Learning Universal Sentence Representations with Mean-Max Attention Autoencoder",
"paper_link": "https://arxiv.org/abs/1809.06590",
"name": "Mean-MaxAAE",
"code": [
{
"language": "TF",
"link": "https://github.com/Zminghua/SentEncoding"
}
]
},
{
"paper_title": "Improving Sentence Representations with Consensus Maximisation",
"paper_link": "https://arxiv.org/abs/1810.01064",
"name": "Multi-view"
},
{
"paper_title": "BioSentVec: creating sentence embeddings for biomedical texts",
"paper_link": "https://arxiv.org/abs/1810.09302",
"name": "BioSentVec",
"code": [
{
"language": "Python",
"link": "https://github.com/ncbi-nlp/BioSentVec"
}
]
},
{
"paper_title": "Learning Cross-Lingual Sentence Representations via a Multi-task Dual-Encoder Model",
"paper_link": "https://arxiv.org/abs/1810.12836",
"name": "USE-xling",
"code": [
{
"language": "TF-Hub",
"link": "https://tfhub.dev/s?q=universal-sentence-encoder-xling",
"no_training_code": true
}
]
},
{
"paper_title": "Word Mover's Embedding: From Word2Vec to Document Embedding",
"paper_link": "https://arxiv.org/abs/1811.01713",
"name": "WordMoversEmbeddings",
"code": [
{
"language": "C, Python",
"link": "https://github.com/IBM/WordMoversEmbeddings",
"pretrained": false
}
]
},
{
"paper_title": "A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks",
"paper_link": "https://arxiv.org/abs/1811.06031",
"name": "HMTL",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/huggingface/hmtl"
}
]
},
{
"paper_title": "Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond",
"paper_link": "https://arxiv.org/abs/1812.10464",
"name": "LASER",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/facebookresearch/LASER"
}
]
},
{
"paper_title": "No Training Required: Exploring Random Encoders for Sentence Classification",
"paper_link": "https://arxiv.org/abs/1901.10444",
"name": "randsent",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/facebookresearch/randsent",
"pretrained": false
}
]
},
{
"paper_title": "CBOW Is Not All You Need: Combining CBOW with the Compositional Matrix Space Model",
"paper_link": "https://arxiv.org/abs/1902.06423",
"name": "CMOW",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/florianmai/word2mat",
"pretrained": false
}
]
},
{
"paper_title": "Multilingual Universal Sentence Encoder",
"paper_link": "https://arxiv.org/abs/1907.04307",
"name": "MultilingualUSE",
"code": [
{
"language": "TF-Hub",
"link": "https://tfhub.dev/google/universal-sentence-encoder-multilingual/1",
"no_training_code": true
}
]
},
{
"paper_title": "GLOSS: Generative Latent Optimization of Sentence Representations",
"paper_link": "https://arxiv.org/abs/1907.06385",
"name": "GLOSS"
},
{
"paper_title": "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
"paper_link": "https://arxiv.org/abs/1908.10084",
"name": "Sentence-BERT",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/UKPLab/sentence-transformers",
"pretrained": true
}
]
},
{
"paper_title": "SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models",
"paper_link": "https://arxiv.org/abs/2002.06652",
"name": "SBERT-WK",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/BinWang28/SBERT-WK-Sentence-Embedding",
"pretrained": true
}
]
},
{
"paper_title": "DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations",
"paper_link": "https://arxiv.org/abs/2006.03659",
"name": "DeCLUTR",
"code": [
{
"language": "Pytorch",
"link": "https://github.com/JohnGiorgi/DeCLUTR"
}
]
},
{
"paper_title": "Language-agnostic BERT Sentence Embedding",
"paper_link": "https://arxiv.org/abs/2007.01852",
"name": "LaBSE",
"code": [
{
"language": "TF-Hub",
"link": "https://tfhub.dev/google/LaBSE/1",
"no_training_code": true
}
]
},
{
"paper_title": "On the Sentence Embeddings from Pre-trained Language Models",
"paper_link": "https://arxiv.org/abs/2011.05864",
"name": "BERT-flow",
"code": [
{
"language": "TF",
"link": "https://github.com/bohanli/BERT-flow",
"pretrained": true
}
]
},
{
"paper_title": "Convolutional Neural Network for Universal Sentence Embeddings",
"paper_link": "https://pdfs.semanticscholar.org/d827/32de6336dd6443ff33cccbb92ced0196ecc1.pdf",
"name": "CSE",
"code": [
{
"language": "Theano",
"link": "https://github.com/XiaoqiJiao/COLING2018"
}
],
"s2_paper_id": "d82732de6336dd6443ff33cccbb92ced0196ecc1"
},
{
"paper_title": "Incremental Domain Adaptation for Neural Machine Translation in Low-Resource Settings",
"paper_link": "https://www.aclweb.org/anthology/W19-4601",
"name": "AraSIF",
"code": [
{
"language": "Python",
"link": "https://github.com/DFKI-Interactive-Machine-Learning/AraSIF"
}
]
}
]