-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattribute_assortativity.py
74 lines (64 loc) · 2.71 KB
/
attribute_assortativity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3
"""Calculates attribute assortativity coefficients for graphs
"""
import argparse
import networkx as nx
import csv
__author__ = "Sergey Knyazev"
__credits__ = ["Sergey Knyazev, Ellsworth Campbell"]
__email__ = "sergey.n.knyazev@gmail.com"
def parse_arguments():
parser = argparse.ArgumentParser(description='Calculates attribute assortativity coefficients for graphs.')
parser.add_argument('attributes', metavar='A', type=str, nargs='+', help='attribute for assortativity calculation')
parser.add_argument('-n', '--nodes', required=True, type=str, dest='node_csv',
help='list of nodes with attributes in csv format with header. The first column should be a node name')
parser.add_argument('-e', '--edges', required=True, type=str, dest='edge_csv',
help='list of edges in csv format with header. The first two columns should be source ant target names')
parser.add_argument('-o', '--out_csv', required=True, type=str, dest='out_csv',
help='name of output csv file')
parser.add_argument('-a', '--numeric_assortativity', action='store_true', dest='num_assort',
help='set this parameter if numeric assortativity is required')
return parser.parse_args()
def parse_nodes(node_csv):
nodes = dict()
with open(node_csv) as csvfile:
node_reader = csv.DictReader(csvfile)
n = next(node_reader)
attrs = list(n.keys())
while True:
node_name = n[attrs[0]]
nodes[node_name] = dict()
for attr in attrs[1:]:
nodes[node_name][attr] = n[attr]
try:
n = next(node_reader)
except StopIteration:
break
return nodes
def parse_edges(edge_csv):
edges = list()
with open(edge_csv) as csvfile:
edge_reader = csv.DictReader(csvfile)
n = next(edge_reader)
attrs = list(n.keys())
while True:
source_name = n[attrs[0]]
target_name = n[attrs[1]]
edges.append((source_name, target_name))
try:
n = next(edge_reader)
except StopIteration:
break
return edges
if __name__ == "__main__":
args = parse_arguments()
G = nx.Graph()
G.add_nodes_from(parse_nodes(args.node_csv).items())
G.add_edges_from(parse_edges(args.edge_csv))
with open(args.out_csv, 'w') as f:
f.write('attribute,assortativity\n')
for attr in args.attributes:
f.write("{},{}\n".format(attr,
nx.attribute_assortativity_coefficient(G, attr)
if args.num_assort else
nx.attribute_assortativity_coefficient(G, attr)))