-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalerts.py
308 lines (233 loc) · 10.8 KB
/
alerts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import os
import sys
import numpy as np
import tensorflow as tf
import glob
from model import dataio, model
from tensorflow import keras
import tensorflow as tf
print(tf.version.VERSION)
# import tensorflow libraries
from tensorflow.keras import layers
from tensorflow.keras.utils import plot_model
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dropout, Conv2DTranspose, ZeroPadding2D
from tensorflow.keras.layers import Input, Conv2D, SeparableConv2D, Add, Dense, BatchNormalization, ReLU, MaxPool2D, GlobalAvgPool2D, Conv2D, GlobalAveragePooling2D, Reshape,Lambda, LSTM, concatenate
from tensorflow.keras.layers import Conv2D, Activation, BatchNormalization
from tensorflow.keras.layers import UpSampling2D, Input, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.metrics import Recall, Precision, categorical_accuracy
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras import backend as K
from util import custom_metrics
from tensorflow.keras.applications import MobileNetV3Small, EfficientNetV2S,EfficientNetV2B0, EfficientNetV2B3
def parse_tfrecord(example_proto):
"""The parsing function.
Read a serialized example into the structure defined by FEATURES_DICT.
Args:
example_proto: a serialized Example.
Returns:
A dictionary of tensors, keyed by feature name.
"""
return tf.io.parse_single_example(example_proto, FEATURES_DICT)
def to_tuple(inputs):
"""Function to convert a dictionary of tensors to a tuple of (inputs, outputs).
Turn the tensors returned by parse_tfrecord into a stack in HWC shape.
Args:
inputs: A dictionary of tensors, keyed by feature name.
Returns:
A tuple of (inputs, outputs).
"""
inputsList = [inputs.get(key) for key in FEATURES]
stacked = tf.stack(inputsList, axis=0)
# Convert from CHW to HWC
stacked = tf.transpose(stacked, [1, 2, 0])
return stacked[:,:,:len(BANDS)], stacked[:,:,len(BANDS):]
def get_dataset(pattern):
"""Function to read, parse and format to tuple a set of input tfrecord files.
Get all the files matching the pattern, parse and convert to tuple.
Args:
pattern: A file pattern to match in a Cloud Storage bucket.
Returns:
A tf.data.Dataset
"""
glob = tf.io.gfile.glob(pattern)
dataset = tf.data.TFRecordDataset(glob, compression_type='GZIP')
dataset = dataset.map(parse_tfrecord, num_parallel_calls=8)
dataset = dataset.map(to_tuple, num_parallel_calls=8)
return dataset
def get_training_dataset(input_path):
"""Loads the training dataset exported by GEE
Returns:
A tf.data.Dataset of training data.
"""
dataset = get_dataset(input_path+'/training/*')
return dataset
def get_testing_dataset(input_path):
"""Loads the test dataset exported by GEE
Returns:
A tf.data.Dataset of evaluation data.
"""
dataset = get_dataset(input_path+'/testing/*')
return dataset
def get_modeling_data_stats(train, test):
'''
Computes the channel means and the std of the train and test sets.
Additionall, the length of the training and testing sets are computed
Paramters:
train: a TFRecordDataset for the training set
test: a TFRecordDataset for the testing set
Returns:
mean - a tf.Tensor(4,) containing the channel means
std - a tf.Tensor(4,) containin the channel standard deviation
train_len - the number of elements in the training dataset
test_len - the number of elements in the testing dataset
'''
# Initialize the variables that we need to keep track of
mean = tf.constant([0.,0.,0.,0.])
std = tf.constant([0.,0.,0.,0.])
nb_samples = 0.0
train_len = 0.0
test_len = 0.0
# Loop through the training dataset
for element in train:
mean = tf.math.add(mean, tf.math.reduce_mean(element[0], axis=[0,1]))
std = tf.math.add(std, tf.math.reduce_std(element[0], axis=[0,1]))
nb_samples += 1
train_len += 1
# Loop through the testing dataset
for element in test:
mean = tf.math.add(mean, tf.math.reduce_mean(element[0], axis=[0,1]))
std = tf.math.add(std, tf.math.reduce_std(element[0], axis=[0,1]))
nb_samples += 1
test_len += 1
# Divide by the number of elements in the two sets
mean = tf.math.divide(mean, nb_samples)
std = tf.math.divide(std, nb_samples)
return mean, std, train_len, test_len
def recall_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred):
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
def dice_coef(y_true, y_pred, smooth=1):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_loss(y_true, y_pred, smooth=1):
intersection = K.sum(K.abs(y_true * y_pred), axis=-1)
true_sum = K.sum(K.square(y_true), -1)
pred_sum = K.sum(K.square(y_pred), -1)
return 1 - ((2. * intersection + smooth) / (true_sum + pred_sum + smooth))
def tversky(y_true, y_pred, smooth=1, alpha=0.7):
y_true_pos = K.flatten(y_true)
y_pred_pos = K.flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos)
false_neg = K.sum(y_true_pos * (1 - y_pred_pos))
false_pos = K.sum((1 - y_true_pos) * y_pred_pos)
return (true_pos + smooth) / (true_pos + alpha * false_neg + (1 - alpha) * false_pos + smooth)
def tversky_loss(y_true, y_pred):
return 1 - tversky(y_true, y_pred)
def focal_tversky_loss(y_true, y_pred, gamma=0.75):
tv = tversky(y_true, y_pred)
return K.pow((1 - tv), gamma)
def bce_dice_loss(y_true, y_pred):
return keras.losses.binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)
def bce_loss(y_true, y_pred):
return keras.losses.binary_crossentropy(y_true, y_pred, label_smoothing=0.2)
def tversky_bce(y_true, y_pred):
return focal_tversky_loss(y_true, y_pred) + dice_loss(y_true, y_pred) # keras.losses.binary_crossentropy(y_true, y_pred)
def build_efficientNet():
inputs = Input(shape=(None,None, 10), name="input_image")
#encoder = EfficientNetV2B0(input_tensor=inputs, weights=None, include_top=False,include_preprocessing =False,classifier_activation=None)
encoder = EfficientNetV2M(input_tensor=inputs, weights=None ,include_top=False,include_preprocessing =False,classifier_activation=None)
inp = encoder.input
skip_connection_names = ["input_image", "block1a_project_activation","block2b_expand_activation","block4a_expand_activation", "block6a_expand_activation"]
skip_connection_names = ["input_image", "block1c_project_activation","block2e_expand_activation","block4a_expand_activation", "block6a_expand_activation"]
encoder_output = encoder.get_layer("top_activation").output
f = [16,32, 64, 128, 256]
x = encoder_output
for i in range(1, len(skip_connection_names)+1, 1):
x_skip = encoder.get_layer(skip_connection_names[-i]).output
x = UpSampling2D((2, 2))(x)
x = Concatenate()([x, x_skip])
x = Conv2D(f[-i], (3, 3), padding="same")(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
x = Conv2D(f[-i], (3, 3), padding="same")(x)
x = BatchNormalization()(x)
x = Activation("relu")(x)
output = Conv2D(2, (3,3), padding="same", activation="sigmoid")(x)
model = Model(inputs=[inp], outputs=[output], name="unet")
return model
def get_models(input_optimizer, input_loss_function, evaluation_metrics):
model = build_efficientNet()
model.summary()
model.compile(
optimizer = input_optimizer,
loss = input_loss_function,
metrics = evaluation_metrics
)
return model
if __name__ == "__main__":
# Set the path to the raw data
raw_data_path = r"/path/to/data"
# Define the path to the log directory for tensorboard
log_dir = r'/path/to/log'
# Define the directory where the models will be saved
model_dir = r'path/to'
# for sentinel 1 data
BANDS = ['VH_after0','VH_after1','VH_before0', 'VH_before1','VH_before2','VV_after0','VV_after1','VV_before0', 'VV_before1', 'VV_before2']
# for NICFI data
#BANDS = ["rb","gb","bb","nb","ra","ga","ba","na"]
RESPONSE = ["alert","other"]
FEATURES = BANDS + RESPONSE
# Specify model training parameters.
#TRAIN_SIZE = 550000
TRAIN_SIZE = 320000
BATCH_SIZE = 32
EPOCHS = 70
BUFFER_SIZE = 1024*4
optimizer = "Adam"
eval_metrics = [categorical_accuracy, custom_metrics.f1_m, custom_metrics.precision_m, custom_metrics.recall_m]
# Specify the size and shape of patches expected by the model.
kernel_size = 128
kernel_shape = [kernel_size, kernel_size]
COLUMNS = [tf.io.FixedLenFeature(shape=kernel_shape, dtype=tf.float32) for k in FEATURES]
FEATURES_DICT = dict(zip(FEATURES, COLUMNS))
KERNEL_SIZE = 128
PATCH_SHAPE = (KERNEL_SIZE, KERNEL_SIZE)
training_files = glob.glob(raw_data_path + '/training/*')
training_ds = dataio.get_dataset(training_files, BANDS, RESPONSE, PATCH_SHAPE, BATCH_SIZE, buffer_size=BUFFER_SIZE, training=True).repeat()
testing_files = glob.glob(raw_data_path + '/testing/*')
testing_ds = dataio.get_dataset(training_files, BANDS, RESPONSE, PATCH_SHAPE, BATCH_SIZE,buffer_size=BUFFER_SIZE)
val_files = glob.glob(raw_data_path + '/validation/*')
val_ds = dataio.get_dataset(training_files, BANDS, RESPONSE, PATCH_SHAPE, BATCH_SIZE,buffer_size=BUFFER_SIZE)
model = get_models(optimizer,tversky_bce, eval_metrics)
#model.load_weights(r'/home/ate/sig/alerts/models/weights/modelkhEfficientv1desc.h5',by_name=True,skip_mismatch=True)
#tensorboard = callbacks.TensorBoard(log_dir=log_dir)
early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=6, verbose=0, mode='min',restore_best_weights=True)
model.fit(
x = training_ds,
epochs = EPOCHS,
steps_per_epoch =int(TRAIN_SIZE / BATCH_SIZE),
validation_data = val_ds,
validation_steps = 500,
callbacks=[early_stop]
)
# check how the model trained
print(model.evaluate(val_ds))
# Save the model
model.save(model_dir, save_format='tf')
model.save_weights( r'path/to/model', save_format='tf')
model.save_weights( r'path/to/model')