-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTLBOClustering.m
127 lines (117 loc) · 2.78 KB
/
TLBOClustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
clear;
warning('off');
% Loading
X = load("iris.csv");
%
k = 3; % Number of Clusters
%
CostFunction=@(m) ClusterCost(m, X); % Cost Function
VarSize=[k size(X,2)]; % Decision Variables Matrix Size
nVar=prod(VarSize); % Number of Decision Variables
VarMin= repmat(min(X),k,1); % Lower Bound of Variables
VarMax= repmat(max(X),k,1); % Upper Bound of Variables
% TLBO Parameters
MaxIt = 100; % Maximum Number of Iterations
nPop = 30; % Population Size (Swarm Size)
%% Start
tic
% Empty Individuals
empty_individual.Position = [];
empty_individual.Cost = [];
empty_individual.Out = [];
% Population Array
pop = repmat(empty_individual, nPop, 1);
% Initialize Best Solution
BestSol.Cost = inf;
% Population Members
for i = 1:nPop
pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
[pop(i).Cost pop(i).Out] = CostFunction(pop(i).Position);
if pop(i).Cost < BestSol.Cost
BestSol = pop(i);
end
end
% Best Cost Record
BestCost = zeros(MaxIt, 1);
%% TLBO Body
for it = 1:MaxIt
% Calculate Population Mean
Mean = 0;
for i = 1:nPop
Mean = Mean + pop(i).Position;
end
Mean = Mean/nPop;
% Select Teacher
Teacher = pop(1);
for i = 2:nPop
if pop(i).Cost < Teacher.Cost
Teacher = pop(i);
end
end
% Teacher Phase
for i = 1:nPop
% Create Empty Solution
newsol = empty_individual;
% Teaching Factor
TF = randi([1 2]);
% Teaching (moving towards teacher)
newsol.Position = pop(i).Position ...
+ rand(VarSize).*(Teacher.Position - TF*Mean);
% Clipping
newsol.Position = max(newsol.Position, VarMin);
newsol.Position = min(newsol.Position, VarMax);
% Evaluation
[newsol.Cost newsol.Out] = CostFunction(newsol.Position);
% Comparision
if newsol.Cost<pop(i).Cost
pop(i) = newsol;
if pop(i).Cost < BestSol.Cost
BestSol = pop(i);
end
end
end
% Learner Phase
for i = 1:nPop
A = 1:nPop;
A(i) = [];
j = A(randi(nPop-1));
Step = pop(i).Position - pop(j).Position;
if pop(j).Cost < pop(i).Cost
Step = -Step;
end
% Create Empty Solution
newsol = empty_individual;
% Teaching (moving towards teacher)
newsol.Position = pop(i).Position + rand(VarSize).*Step;
% Clipping
newsol.Position = max(newsol.Position, VarMin);
newsol.Position = min(newsol.Position, VarMax);
% Evaluation
[newsol.Cost newsol.Out] = CostFunction(newsol.Position);
% Comparision
if newsol.Cost<pop(i).Cost
pop(i) = newsol;
if pop(i).Cost < BestSol.Cost
BestSol = pop(i);
end
end
end
BestCost(it) = BestSol.Cost;
% Iteration
disp(['In Iteration ' num2str(it) ': TLBO Cost Is = ' num2str(BestCost(it))]);
end
% Features
f1=1;
f2=3;
figure(1);
PlotRes(X, BestSol,f1,f2);
% ITR
figure;
plot(BestCost,'k','LineWidth',2);
xlabel('Iteration');
ylabel('Best Cost');
ax = gca;
ax.FontSize = 12;
ax.FontWeight='bold';
grid on;
toc