forked from KEAML-JLU/DeepTextClustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreuters_IDEC.py
466 lines (434 loc) · 20.5 KB
/
reuters_IDEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import random
import numpy as np
import tensorboard_logger
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from sklearn.cluster import KMeans
from torch.autograd import Variable
from sklearn.metrics import normalized_mutual_info_score
from sklearn.metrics import adjusted_mutual_info_score
from SDAE import extract_sdae_text, extract_sdae_model
from config import cfg, get_output_dir
from data_loader import Corpus_Loader
from models import ClusterNet
from utils import cluster_acc
class Text_IDEC(object):
def __init__(self, root_dir, batch_size=256, n_clusters=4, fd_hidden_dim=10, layer_norm=True, lr=0.001,
direct_update=False, maxiter=2e4, update_interval=140, tol=0.001, gamma=0.1,
fine_tune_infersent=False, use_vat=False, use_tensorboard=False, semi_supervised=False, split_sents=False, id=0, verbose=True, use_ae=True):
# model's settings
self.root_dir = root_dir
self.batch_size = batch_size
self.fd_hidden_dim = fd_hidden_dim
self.n_clusters = n_clusters
self.layer_norm = layer_norm
self.use_vat = use_vat
self.semi_supervised = semi_supervised
self.lr = lr
self.direct_update = direct_update
self.maxiter = maxiter
self.update_interval = update_interval
self.tol = tol
self.gamma = gamma
self.fine_tune_infersent = fine_tune_infersent
self.verbose = verbose
self.use_tensorboard = use_tensorboard
self.id = id
self.use_cuda = torch.cuda.is_available()
self.split_sents = split_sents
self.use_ae = use_ae
# data loader
self.corpus_loader = Corpus_Loader(self.root_dir,
layer_norm=self.layer_norm,
verbose=self.verbose,
use_cuda=self.use_cuda,
semi_supervised=self.semi_supervised,
split_sents=self.split_sents)
# model's components
self.kmeans = None
# self.fd_ae = extract_sdae_text(dim=fd_hidden_dim)
self.fd_ae = extract_sdae_model(input_dim=2000, hidden_dims=cfg.HIDDEN_DIMS)
self.cluster_layer = None
self.ae_criteron = nn.MSELoss()
self.cluster_criteron = F.binary_cross_entropy
self.optimizer = None
# model's state
self.current_p = None
self.current_q = None
self.current_pred_labels = None
self.past_pred_labels = None
self.current_cluster_acc = None
# model's logger
self.logger_tensorboard = None
# initialize model's parameters and update current state
self.initialize_model()
self.initialize_tensorboard()
def initialize_tensorboard(self):
outputdir = get_output_dir(self.root_dir)
loggin_dir = os.path.join(outputdir, 'runs', 'clustering')
if not os.path.exists(loggin_dir):
os.makedirs(loggin_dir)
self.logger_tensorboard = tensorboard_logger.Logger(os.path.join(loggin_dir, '{}'.format(self.id)))
def initialize_model(self):
if self.verbose:
print('Loading pretrainded feedforward autoencoder')
self.load_pretrained_fd_autoencoder()
if self.verbose:
print('Kmeans by hidden features')
self.initialize_kmeans()
if self.verbose:
print('Kmeans cluster acc is {}'.format(self.current_cluster_acc))
print('Initialzing cluster layer by Kmeans centers')
self.initialize_cluster_layer()
if self.verbose:
print('Initializing Adam optimzer, learning rate is {}'.format(self.lr))
self.initialize_optimizer()
if self.verbose:
print('Updating target distribution')
self.update_target_distribution()
def load_pretrained_fd_autoencoder(self):
"""
load pretrained stack denoise autoencoder
"""
# outputdir = get_output_dir(self.root_dir)
outputdir = self.root_dir
net_filename = os.path.join(outputdir, cfg.PRETRAINED_FAE_FILENAME)
checkpoint = torch.load(net_filename)
# there some problems when loading cuda pretrained models
self.fd_ae.load_state_dict(checkpoint['state_dict'])
if self.use_cuda:
self.fd_ae.cuda()
def initialize_optimizer(self):
params = [
{'params': self.fd_ae.parameters()},
{'params': self.cluster_layer.parameters()}
]
if self.fine_tune_infersent:
params.append({'params': self.corpus_loader.infersent.parameters(), 'lr': 0.001 * self.lr})
self.optimizer = optim.Adam(params, lr=self.lr)
def initialize_kmeans(self):
features = self.__get_initial_hidden_features()
kmeans = KMeans(n_clusters=self.n_clusters, n_init=20)
self.current_pred_labels = kmeans.fit_predict(features)
self.update_cluster_acc()
self.kmeans = kmeans
def __get_initial_hidden_features(self):
batch_size = self.batch_size
features_numpy = self.corpus_loader.get_fixed_features()
data_size = self.corpus_loader.data_size
hidden_feat = np.zeros((data_size, self.fd_hidden_dim))
for index in range(0, data_size, batch_size):
data_batch = features_numpy[index: index+batch_size]
data_batch = Variable(torch.Tensor(data_batch))
if self.use_cuda:
data_batch = data_batch.cuda()
hidden_batch, _ = self.fd_ae(data_batch)
hidden_batch = hidden_batch.data.cpu().numpy()
hidden_feat[index: index+batch_size] = hidden_batch
return hidden_feat
#################################################################
def get_current_hidden_features(self):
return self.__get_initial_hidden_features()
#################################################################
def initialize_cluster_layer(self):
self.cluster_layer = ClusterNet(torch.Tensor(self.kmeans.cluster_centers_.astype(np.float32)))
if self.use_cuda:
self.cluster_layer.cuda()
def get_batch_target_distribution(self, batch_id):
batch_target_distribution = self.current_p[batch_id]
batch_target_distribution = Variable(torch.Tensor(batch_target_distribution))
if self.use_cuda:
batch_target_distribution = batch_target_distribution.cuda()
return batch_target_distribution
def update_target_distribution(self):
data_size = self.corpus_loader.data_size
all_q = np.zeros((data_size, self.n_clusters))
tmp_size = 0
for current_batch in self.corpus_loader.\
train_data_iter(self.batch_size):
id_batch = current_batch[2]
if self.fine_tune_infersent:
sent_feat = current_batch[3]
else:
sent_feat = current_batch[0]
hidden_feat, _ = self.fd_ae(sent_feat)
q_batch = self.cluster_layer(hidden_feat)
q_batch = q_batch.cpu().data.numpy()
all_q[id_batch] = q_batch
tmp_size += len(id_batch)
assert tmp_size == data_size
all_p = self.target_distribution_numpy(all_q)
self.current_p = all_p
self.current_q = all_q
self.update_pred_labels()
self.update_cluster_acc()
def update_pred_labels(self):
# warning:
# When running this function first time,
# the value of self.past_pred_labels will be equal to self.current_pred_labels
# This function shouldn't be called for successive times.
self.past_pred_labels = self.current_pred_labels
self.current_pred_labels = np.argmax(self.current_q, axis=1)
def update_cluster_acc(self):
self.current_cluster_acc = cluster_acc(np.array(self.corpus_loader.train_labels), self.current_pred_labels)
@staticmethod
def target_distribution_torch(q):
p = torch.pow(q, 2) / torch.sum(q, dim=0).unsqueeze(0)
p = p / torch.sum(p, dim=1).unsqueeze(1)
# p = torch.t(torch.t(p) / torch.sum(p, dim=1))
return Variable(p.data)
@staticmethod
def target_distribution_numpy(q):
p = np.power(q, 2) / np.sum(q, axis=0, keepdims=True)
p = p / np.sum(p, axis=1, keepdims=True)
return p
def vat(self, x_batch, xi=0.1, Ip=1):
# virtual adversarial training
# forbid x_batch's grad backward
x_batch = Variable(x_batch.data)
hidden_batch, _ = self.fd_ae(x_batch)
q_batch = self.cluster_layer(hidden_batch)
q_batch = Variable(q_batch.data)
# initialize residue d to normalized random vector
d = torch.randn(x_batch.size())
if self.use_cuda:
d = d.cuda()
d = d / (torch.norm(d, p=2, dim=1, keepdim=True) + 1e-8)
# ensure model's parameter to be 0
self.model_zero_grad()
for i in range(Ip):
d = nn.Parameter(d)
tmp_x_batch = x_batch + xi * d
tmp_hidden_batch, _ = self.fd_ae(tmp_x_batch)
tmp_q_batch = self.cluster_layer(tmp_hidden_batch)
tmp_loss = F.binary_cross_entropy(tmp_q_batch, q_batch)
tmp_loss.backward()
d = d.grad.data
d = d / (torch.norm(d, p=2, dim=1, keepdim=True) + 1e-8)
self.model_zero_grad()
# computing vat loss
d = Variable(d)
tmp_x_batch = x_batch + xi * d
tmp_hidden_batch, _ = self.fd_ae(tmp_x_batch)
tmp_q_batch = self.cluster_layer(tmp_hidden_batch)
tmp_loss = F.binary_cross_entropy(tmp_q_batch, q_batch)
return tmp_loss
def whether_convergence(self):
delta_label = np.sum(self.past_pred_labels != self.current_pred_labels) / float(len(self.current_pred_labels))
return delta_label < self.tol
def model_zero_grad(self):
self.cluster_layer.zero_grad()
self.fd_ae.zero_grad()
if self.fine_tune_infersent:
self.corpus_loader.infersent.zero_grad()
def clustering(self):
if self.semi_supervised:
train_data_iter = self.corpus_loader.train_data_iter(self.batch_size,
return_variable_features=self.fine_tune_infersent,
shuffle=False,
infinite=True)
constraints_data_iter = self.corpus_loader.constraint_data_iter(self.batch_size,
shuffle=True,
infinite=True)
ite = 0
tmp_ite_cons = 0
while True:
if random.random() > 0.95:
self.model_zero_grad()
feat_batch1, feat_batch2 = constraints_data_iter.next()
hidden_batch1, output_feat1 = self.fd_ae(feat_batch1)
hidden_batch2, output_feat2 = self.fd_ae(feat_batch2)
ae_loss1 = self.ae_criteron(output_feat1, feat_batch1)
ae_loss2 = self.ae_criteron(output_feat2, feat_batch2)
q_batch1 = self.cluster_layer(hidden_batch1)
q_batch2 = self.cluster_layer(hidden_batch2)
if random.random() > 0.5:
q_batch1, q_batch2 = q_batch2, q_batch1
q_batch2 = Variable(q_batch2.data)
k_loss = self.cluster_criteron(q_batch1, q_batch2)
loss = 2 * self.gamma * k_loss + ae_loss1 + ae_loss2
if self.use_tensorboard:
self.logger_tensorboard.log_value('cons_loss', loss.data[0], tmp_ite_cons)
self.logger_tensorboard.log_value('cons_kl_loss', k_loss.data[0], tmp_ite_cons)
loss.backward()
self.optimizer.step()
tmp_ite_cons += 1
else:
if ite % self.update_interval == (self.update_interval - 1):
self.update_target_distribution()
print('Iter {} acc {}'.format(ite, self.current_cluster_acc))
if self.use_tensorboard:
self.logger_tensorboard.log_value('acc', self.current_cluster_acc, ite)
if ite > 0 and self.whether_convergence():
break
# current_batch = train_data_iter.next()
current_batch = next(train_data_iter)
fixed_feat_batch = current_batch[0]
id_batch = current_batch[2]
if self.fine_tune_infersent:
sent_feat_batch = current_batch[3]
else:
sent_feat_batch = fixed_feat_batch
self.model_zero_grad()
hidden_batch, output_batch = self.fd_ae(sent_feat_batch)
q_batch = self.cluster_layer(hidden_batch)
if self.direct_update:
p_batch = self.target_distribution_torch(q_batch)
else:
p_batch = self.get_batch_target_distribution(id_batch)
ae_loss = self.ae_criteron(output_batch, fixed_feat_batch)
cluster_loss = self.cluster_criteron(q_batch, p_batch)
if self.use_vat:
vat_loss = self.vat(sent_feat_batch)
else:
vat_loss = 0
loss = self.gamma * (cluster_loss + vat_loss) + ae_loss
if self.use_tensorboard:
self.logger_tensorboard.log_value('cluster_loss', cluster_loss.data[0], ite)
self.logger_tensorboard.log_value('ae_loss', ae_loss.data[0], ite)
if self.use_vat:
self.logger_tensorboard.log_value('vat_loss', vat_loss.data[0], ite)
self.logger_tensorboard.log_value('loss', loss.data[0], ite)
loss.backward()
self.optimizer.step()
######################################
ite += 1
if ite >= int(self.maxiter):
break
######################################
else:
train_data_iter = self.corpus_loader.train_data_iter(self.batch_size,
# return_variable_features=self.fine_tune_infersent,
shuffle=False,
infinite=True)
for ite in range(int(self.maxiter)):
if ite % self.update_interval == (self.update_interval - 1):
self.update_target_distribution()
print('Iter {} acc {}'.format(ite, self.current_cluster_acc))
if self.use_tensorboard:
self.logger_tensorboard.log_value('acc', self.current_cluster_acc, ite)
if ite > 0 and self.whether_convergence():
break
# current_batch = train_data_iter.next()
current_batch = next(train_data_iter)
fixed_feat_batch = current_batch[0]
id_batch = current_batch[2]
if self.fine_tune_infersent:
sent_feat_batch = current_batch[3]
else:
sent_feat_batch = fixed_feat_batch
self.model_zero_grad()
hidden_batch, output_batch = self.fd_ae(sent_feat_batch)
q_batch = self.cluster_layer(hidden_batch)
if self.direct_update:
p_batch = self.target_distribution_torch(q_batch)
else:
p_batch = self.get_batch_target_distribution(id_batch)
if self.use_ae:
ae_loss = self.ae_criteron(output_batch, fixed_feat_batch)
else:
ae_loss = 0
cluster_loss = self.cluster_criteron(q_batch, p_batch)
if self.use_vat:
vat_loss = self.vat(sent_feat_batch)
else:
vat_loss = 0
loss = self.gamma * (cluster_loss + vat_loss) + ae_loss
if self.use_tensorboard:
self.logger_tensorboard.log_value('cluster_loss', cluster_loss.data[0], ite)
if self.use_ae:
self.logger_tensorboard.log_value('ae_loss', ae_loss.data[0], ite)
if self.use_vat:
self.logger_tensorboard.log_value('vat_loss', vat_loss.data[0], ite)
self.logger_tensorboard.log_value('loss', loss.data[0], ite)
loss.backward()
self.optimizer.step()
def dump_mongo(corpora, feat_name, n_topics, acc, pred, all_pred, all_acc, all_nmi, all_ari):
acc_std = np.std(all_acc)
acc_mean = np.mean(all_acc)
nmi_std = np.std(all_nmi)
nmi_mean = np.mean(all_nmi)
ari_std = np.std(all_ari)
ari_mean = np.mean(all_ari)
best_nmi = np.max(all_nmi)
best_ari = np.max(all_ari)
tmp = {
'corpora': corpora,
'feat_name': feat_name,
'n_topics': n_topics,
'best_pred': pred,
'best_acc': acc,
'best_nmi':best_nmi,
'best_ari':best_ari,
'all_pred': all_pred,
'all_acc': all_acc,
'acc_std':acc_std,
'acc_mean':acc_mean,
'all_nmi':all_nmi,
'nmi_std':nmi_std,
'nmi_mean':nmi_mean,
'all_ari':all_ari,
'ari_std':ari_std,
'ari_mean':ari_mean}
print(tmp)
with open('idec_results.txt','a') as f:
import json
f.write(json.dumps(tmp))
f.write('\n')
if __name__ == '__main__':
data_dict = {0:'ag_news',1:'dbpedia', 2:'yahoo_answers', 3:'reuters_2', 4:'reuters_5', 5:'reuters_10', 6:'reuters_19'}
n_cluster_dict = {0: 4, 1: 14, 2: 10, 3:2, 4:5, 5:10, 6:19}
raw_feat_name = 'DEC'
trial_num = 10
for corpora_id in range(3, 7):
corpora_name = data_dict[corpora_id]
root_dir = 'data/' + data_dict[corpora_id]
n_clusters = n_cluster_dict[corpora_id]
for use_ae in [True, False]:
feat_name = 'I'+raw_feat_name if use_ae else raw_feat_name
best_acc = 0.0
best_pred = None
all_pred = []
all_acc = []
all_nmi = []
all_ari = []
for i in range(trial_num):
text_idec_model = Text_IDEC(root_dir=root_dir + '/tfidf_i',
update_interval=10,
n_clusters=n_clusters,
use_tensorboard=True,
use_vat=False,
id=4,
semi_supervised=False,
split_sents=True,
use_ae=use_ae,
fd_hidden_dim=cfg.HIDDEN_DIMS[-1])
text_idec_model.clustering()
print('Total acc is {}'.format(text_idec_model.current_cluster_acc))
pred = np.array(text_idec_model.current_pred_labels)
labels = np.array(text_idec_model.corpus_loader.train_labels)
acc = cluster_acc(labels, pred)
nmi = normalized_mutual_info_score(labels, pred)
ari = adjusted_mutual_info_score(labels, pred)
all_pred.append(pred.tolist())
all_acc.append(acc)
all_nmi.append(nmi)
all_ari.append(ari)
if acc > best_acc:
best_pred = pred
best_acc = acc
print('{} best acc is {}'.format(feat_name, best_acc))
pred_std = np.std(all_acc)
pred_mean = np.mean(all_acc)
dump_mongo(corpora=corpora_name,
feat_name=feat_name,
n_topics=n_clusters,
acc=best_acc,
pred=best_pred.tolist(),
all_pred=all_pred,
all_acc=all_acc,
all_nmi=all_nmi,
all_ari=all_ari)