forked from KEAML-JLU/DeepTextClustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_DCN_shuffle.py
223 lines (204 loc) · 9.28 KB
/
text_DCN_shuffle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from sklearn.cluster import KMeans
from collections import Counter
from utils import cluster_acc
class DCN(object):
def __init__(self,
n_clusters,
net,
hidden_dim,
lr=0.001,
tol=0.001,
batch_size=256,
max_epochs=100,
recons_lam=1,
cluster_lam=0.5,
use_cuda=torch.cuda.is_available(),
init_num=-1,
verbose=True):
self.n_clusters = n_clusters
self.hidden_dim = hidden_dim
self.lr = lr
self.batch_size = batch_size
self.tol = tol
self.max_epochs = max_epochs
self.recons_lam = recons_lam
self.cluster_lam = cluster_lam
self.use_cuda = use_cuda
self.verbose = verbose
self.init_num = init_num
self.net = net
assert isinstance(self.net, nn.Module)
self.centers = None
def fit(self, feat, labels=None):
feat = feat.astype(np.float32)
batch_size = self.batch_size
data_size = feat.shape[0]
count = {i: 0 for i in range(self.n_clusters)}
hidden_feat = self.get_hidden_features(feat, self.net, self.hidden_dim, batch_size=self.batch_size, use_cuda=self.use_cuda)
idx, centers = self.init_cluster(hidden_feat, n_clusters=self.n_clusters)
last_pred = idx[:]
if labels is not None:
acc = cluster_acc(labels, idx)
print('KMeans pretraining acc is {}'.format(acc))
# optimizer = optim.Adam(self.net.parameters(), lr=self.lr)
# optimizer = optim.ASGD(self.net.parameters(), lr=self.lr)
optimizer = optim.SGD(self.net.parameters(), lr=self.lr, momentum=0.9)
for epoch in range(self.max_epochs):
shuffle_idx = np.arange(data_size)
shuffle_idx = np.random.permutation(data_size)
if epoch == 1:
if self.init_num < 0:
count = Counter(idx)
else:
count = {i: self.init_num for i in range(self.n_clusters)}
for index in range(0, data_size, batch_size):
feat_batch = Variable(torch.from_numpy(feat[shuffle_idx[index: index+batch_size]]))
idx_batch = idx[shuffle_idx[index: index+batch_size]]
centers_batch = Variable(torch.from_numpy(centers[idx_batch]))
if self.use_cuda:
feat_batch = feat_batch.cuda()
centers_batch = centers_batch.cuda()
optimizer.zero_grad()
hidden_batch, output_batch = self.net(feat_batch)
recons_loss = F.mse_loss(output_batch, feat_batch)
cluster_loss = F.mse_loss(hidden_batch, centers_batch)
loss = self.recons_lam * recons_loss + self.cluster_lam * cluster_loss
loss.backward()
optimizer.step()
hidden_batch2, _ = self.net(feat_batch)
hidden_batch2 = hidden_batch2.cpu().data.numpy()
if epoch >= 1:
tmp_idx_batch, centers, count = self.batch_km(hidden_batch2, centers, count)
idx[shuffle_idx[index: index+batch_size]] = tmp_idx_batch
hidden_feat = self.get_hidden_features(feat, self.net, self.hidden_dim, batch_size=self.batch_size, use_cuda=self.use_cuda)
idx, centers = self.init_cluster(hidden_feat, n_clusters=self.n_clusters, init_centers=centers)
acc = None
if labels is not None:
acc = cluster_acc(labels, idx)
if self.verbose:
print('Epoch {} end, current acc is {}'.format(epoch + 1, acc))
if self.whether_convergence(last_pred, idx, self.tol):
print('End Iter')
break
else:
last_pred = idx[:]
if self.verbose:
print('DCN acc is {}'.format(acc))
self.centenrs = centers
def predict(self, feat):
hidden_feat = self.get_hidden_features(feat, self.net, self.hidden_dim, batch_size=self.batch_size, use_cuda=self.use_cuda)
distances = np.linalg.norm(hidden_feat[:,np.newaxis] - self.centers[np.newaxis, :], axis=-1)
pred = np.argmin(distances, axis=-1)
return pred
@staticmethod
def get_hidden_features(feat, net, hidden_dim, batch_size=256, use_cuda=torch.cuda.is_available()):
feat = feat.astype(np.float32)
data_size = feat.shape[0]
hidden_feat = np.zeros((data_size, hidden_dim))
for index in range(0, data_size, batch_size):
data_batch = feat[index: index + batch_size]
data_batch = Variable(torch.from_numpy(data_batch))
if use_cuda:
data_batch = data_batch.cuda()
hidden_batch, _ = net(data_batch)
hidden_batch = hidden_batch.data.cpu().numpy()
hidden_feat[index: index+batch_size] = hidden_batch
return hidden_feat
@staticmethod
def init_cluster(feat, n_clusters, init_centers=None):
init_centers = 'k-means++' if init_centers is None else init_centers
kmeans = KMeans(n_clusters=n_clusters, init=init_centers, n_init=20)
idx = kmeans.fit_predict(feat)
centers = kmeans.cluster_centers_
centers = centers.astype(np.float32)
return idx, centers
@staticmethod
def batch_km(data, centers, count):
# data[:, np.newaxis] is a data_size * 1 * feat_size array
# centers[np.newaxis, :] is a 1 * center_size * feat_size array
if True:
distances = np.linalg.norm(data[:, np.newaxis] - centers[np.newaxis, :], axis=-1)
tmp_idx = np.argmin(distances, axis=-1)
N = tmp_idx.shape[0]
for i in range(N):
c = tmp_idx[i]
count[c] += 1
eta = 1. / count[c]
centers[c] = (1 - eta) * centers[c] + eta * data[c]
return tmp_idx, centers, count
else:
N = data.shape[0]
tmp_idx = np.zeros(N, dtype=np.int64)
for i in range(N):
distance = np.linalg.norm(data[i,np.newaxis] - centers, axis=-1)
c = np.argmin(distance)
tmp_idx[i] = c
count[c] += 1
eta = 1. / count[c]
centers[c] = (1 - eta) * centers[c] + eta * data[c]
return tmp_idx, centers, count
@staticmethod
def whether_convergence(last_pred, current_pred, tol):
delta = np.sum(last_pred != current_pred) / float(len(current_pred))
return delta < tol
if __name__ == '__main__':
from utils import load_feat, initialize_environment
from SDAE import extract_sdae_model
from config import cfg, get_output_dir
import os
def get_args():
import argparse
parser = argparse.ArgumentParser(description='Deep Text Cluster Model')
parser.add_argument('--data_dir', type=str, default='data/dbpedia/', help='directory of dataset')
parser.add_argument('--n_clusters', type=int, default=14, help='cluster number')
parser.add_argument('--seed', type=int, default=cfg.RNG_SEED, help='random seed')
parser.add_argument('--tol', type=float, default=0.001, help='tolerance')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--recons_lam', type=float, default=1, help='reconstruction loss regularization coefficient')
parser.add_argument('--cluster_lam', type=float, default=0.5, help='cluster loss regularization coefficient')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--max_epochs', type=int, default=100, help='max epochs')
parser.add_argument('--init_num', type=int, default=100, help='max epochs')
parser.add_argument('--verbose', help='whether to print log', action='store_true')
args = parser.parse_args()
return args
args = get_args()
# n_clusters = 4
# data_dir = 'data/ag_news/'
data_dir = args.data_dir
n_clusters = args.n_clusters
use_cuda = torch.cuda.is_available()
random_seed = args.seed
recons_lam = args.recons_lam
cluster_lam = args.cluster_lam
batch_size = args.batch_size
init_num = args.init_num
tol = args.tol
lr = args.lr
initialize_environment(random_seed=random_seed, use_cuda=use_cuda)
feat_path = os.path.join(data_dir, cfg.TRAIN_TEXT_FEAT_FILE_NAME)
feat, labels, ids = load_feat(feat_path)
outputdir = get_output_dir(data_dir)
net_filename = os.path.join(outputdir, cfg.PRETRAINED_FAE_FILENAME)
checkpoint = torch.load(net_filename)
net = extract_sdae_model(input_dim=cfg.INPUT_DIM, hidden_dims=cfg.HIDDEN_DIMS)
net.load_state_dict(checkpoint['state_dict'])
if use_cuda:
net.cuda()
dcn = DCN(n_clusters,
net,
cfg.HIDDEN_DIMS[-1],
lr=lr,
tol=tol,
batch_size=batch_size,
recons_lam=recons_lam,
cluster_lam=cluster_lam,
use_cuda=use_cuda,
verbose=True)
dcn.fit(feat, labels=labels)