-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathmain.py
479 lines (410 loc) · 18.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import argparse
import os
import shutil
import time
import math
import warnings
import models
from utils import convert_model, measure_model
parser = argparse.ArgumentParser(description='PyTorch Condensed Convolutional Networks')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--model', default='condensenet', type=str, metavar='M',
help='model to train the dataset')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=120, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate (default: 0.1)')
parser.add_argument('--lr-type', default='cosine', type=str, metavar='T',
help='learning rate strategy (default: cosine)',
choices=['cosine', 'multistep'])
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model (default: false)')
parser.add_argument('--no-save-model', dest='no_save_model', action='store_true',
help='only save best model (default: false)')
parser.add_argument('--manual-seed', default=0, type=int, metavar='N',
help='manual seed (default: 0)')
parser.add_argument('--gpu',
help='gpu available')
parser.add_argument('--savedir', type=str, metavar='PATH', default='results/savedir',
help='path to save result and checkpoint (default: results/savedir)')
parser.add_argument('--resume', action='store_true',
help='use latest checkpoint if have any (default: none)')
parser.add_argument('--stages', type=str, metavar='STAGE DEPTH',
help='per layer depth')
parser.add_argument('--bottleneck', default=4, type=int, metavar='B',
help='bottleneck (default: 4)')
parser.add_argument('--group-1x1', type=int, metavar='G', default=4,
help='1x1 group convolution (default: 4)')
parser.add_argument('--group-3x3', type=int, metavar='G', default=4,
help='3x3 group convolution (default: 4)')
parser.add_argument('--condense-factor', type=int, metavar='C', default=4,
help='condense factor (default: 4)')
parser.add_argument('--growth', type=str, metavar='GROWTH RATE',
help='per layer growth')
parser.add_argument('--reduction', default=0.5, type=float, metavar='R',
help='transition reduction (default: 0.5)')
parser.add_argument('--dropout-rate', default=0, type=float,
help='drop out (default: 0)')
parser.add_argument('--group-lasso-lambda', default=0., type=float, metavar='LASSO',
help='group lasso loss weight (default: 0)')
parser.add_argument('--evaluate', action='store_true',
help='evaluate model on validation set (default: false)')
parser.add_argument('--convert-from', default=None, type=str, metavar='PATH',
help='path to saved checkpoint (default: none)')
parser.add_argument('--evaluate-from', default=None, type=str, metavar='PATH',
help='path to saved checkpoint (default: none)')
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
args.stages = list(map(int, args.stages.split('-')))
args.growth = list(map(int, args.growth.split('-')))
if args.condense_factor is None:
args.condense_factor = args.group_1x1
if args.data == 'cifar10':
args.num_classes = 10
elif args.data == 'cifar100':
args.num_classes = 100
else:
args.num_classes = 1000
warnings.filterwarnings("ignore")
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
best_prec1 = 0
def main():
global args, best_prec1
### Calculate FLOPs & Param
model = getattr(models, args.model)(args)
print(model)
if args.data in ['cifar10', 'cifar100']:
IMAGE_SIZE = 32
else:
IMAGE_SIZE = 224
n_flops, n_params = measure_model(model, IMAGE_SIZE, IMAGE_SIZE)
print('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6))
args.filename = "%s_%s_%s.txt" % \
(args.model, int(n_params), int(n_flops))
del(model)
print(args)
### Create model
model = getattr(models, args.model)(args)
if args.model.startswith('alexnet') or args.model.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
### Define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
### Optionally resume from a checkpoint
if args.resume:
checkpoint = load_checkpoint(args)
if checkpoint is not None:
args.start_epoch = checkpoint['epoch'] + 1
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
### Optionally convert from a model
if args.convert_from is not None:
args.evaluate = True
state_dict = torch.load(args.convert_from)['state_dict']
model.load_state_dict(state_dict)
model = model.cpu().module
convert_model(model, args)
model = nn.DataParallel(model).cuda()
head, tail = os.path.split(args.convert_from)
tail = "converted_" + tail
torch.save({'state_dict': model.state_dict()}, os.path.join(head, tail))
### Optionally evaluate from a model
if args.evaluate_from is not None:
args.evaluate = True
state_dict = torch.load(args.evaluate_from)['state_dict']
model.load_state_dict(state_dict)
cudnn.benchmark = True
### Data loading
if args.data == "cifar10":
normalize = transforms.Normalize(mean=[0.4914, 0.4824, 0.4467],
std=[0.2471, 0.2435, 0.2616])
train_set = datasets.CIFAR10('../data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.CIFAR10('../data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
elif args.data == "cifar100":
normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408],
std=[0.2675, 0.2565, 0.2761])
train_set = datasets.CIFAR100('../data', train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.CIFAR100('../data', train=False,
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
else:
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_set = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_set = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_set,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_set,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion)
return
for epoch in range(args.start_epoch, args.epochs):
### Train for one epoch
tr_prec1, tr_prec5, loss, lr = \
train(train_loader, model, criterion, optimizer, epoch)
### Evaluate on validation set
val_prec1, val_prec5 = validate(val_loader, model, criterion)
### Remember best prec@1 and save checkpoint
is_best = val_prec1 < best_prec1
best_prec1 = max(val_prec1, best_prec1)
model_filename = 'checkpoint_%03d.pth.tar' % epoch
save_checkpoint({
'epoch': epoch,
'model': args.model,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, args, is_best, model_filename, "%.4f %.4f %.4f %.4f %.4f %.4f\n" %
(val_prec1, val_prec5, tr_prec1, tr_prec5, loss, lr))
### Convert model and test
model = model.cpu().module
convert_model(model, args)
model = nn.DataParallel(model).cuda()
print(model)
validate(val_loader, model, criterion)
n_flops, n_params = measure_model(model, IMAGE_SIZE, IMAGE_SIZE)
print('FLOPs: %.2fM, Params: %.2fM' % (n_flops / 1e6, n_params / 1e6))
return
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
learned_module_list = []
### Switch to train mode
model.train()
### Find all learned convs to prepare for group lasso loss
for m in model.modules():
if m.__str__().startswith('LearnedGroupConv'):
learned_module_list.append(m)
running_lr = None
end = time.time()
for i, (input, target) in enumerate(train_loader):
progress = float(epoch * len(train_loader) + i) / \
(args.epochs * len(train_loader))
args.progress = progress
### Adjust learning rate
lr = adjust_learning_rate(optimizer, epoch, args, batch=i,
nBatch=len(train_loader), method=args.lr_type)
if running_lr is None:
running_lr = lr
### Measure data loading time
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
### Compute output
output = model(input_var, progress)
loss = criterion(output, target_var)
### Add group lasso loss
if args.group_lasso_lambda > 0:
lasso_loss = 0
for m in learned_module_list:
lasso_loss = lasso_loss + m.lasso_loss
loss = loss + args.group_lasso_lambda * lasso_loss
### Measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
### Compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
### Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f}\t' # ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f}\t' # ({data_time.avg:.3f}) '
'Loss {loss.val:.4f}\t' # ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f}\t' # ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f}\t' # ({top5.avg:.3f})'
'lr {lr: .4f}'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=lr))
return 100. - top1.avg, 100. - top5.avg, losses.avg, running_lr
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
### Switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(non_blocking=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
### Compute output
output = model(input_var)
loss = criterion(output, target_var)
### Measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
### Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return 100. - top1.avg, 100. - top5.avg
def load_checkpoint(args):
model_dir = os.path.join(args.savedir, 'save_models')
latest_filename = os.path.join(model_dir, 'latest.txt')
if os.path.exists(latest_filename):
with open(latest_filename, 'r') as fin:
model_filename = fin.readlines()[0]
else:
return None
print("=> loading checkpoint '{}'".format(model_filename))
state = torch.load(model_filename)
print("=> loaded checkpoint '{}'".format(model_filename))
return state
def save_checkpoint(state, args, is_best, filename, result):
print(args)
result_filename = os.path.join(args.savedir, args.filename)
model_dir = os.path.join(args.savedir, 'save_models')
model_filename = os.path.join(model_dir, filename)
latest_filename = os.path.join(model_dir, 'latest.txt')
best_filename = os.path.join(model_dir, 'model_best.pth.tar')
os.makedirs(args.savedir, exist_ok=True)
os.makedirs(model_dir, exist_ok=True)
print("=> saving checkpoint '{}'".format(model_filename))
with open(result_filename, 'a') as fout:
fout.write(result)
torch.save(state, model_filename)
with open(latest_filename, 'w') as fout:
fout.write(model_filename)
if args.no_save_model:
shutil.move(model_filename, best_filename)
elif is_best:
shutil.copyfile(model_filename, best_filename)
print("=> saved checkpoint '{}'".format(model_filename))
return
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, args, batch=None,
nBatch=None, method='cosine'):
if method == 'cosine':
T_total = args.epochs * nBatch
T_cur = (epoch % args.epochs) * nBatch + batch
lr = 0.5 * args.lr * (1 + math.cos(math.pi * T_cur / T_total))
elif method == 'multistep':
if args.data in ['cifar10', 'cifar100']:
lr, decay_rate = args.lr, 0.1
if epoch >= args.epochs * 0.75:
lr *= decay_rate**2
elif epoch >= args.epochs * 0.5:
lr *= decay_rate
else:
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()