-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathensemble_relative.py
135 lines (122 loc) · 4.99 KB
/
ensemble_relative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os.path
import pickle
import warnings
import numpy as np
import torch
from torch import nn
from torch.utils.data import ConcatDataset, DataLoader
from tqdm import tqdm
from data.SWE_Dataset import gridMETRelativeStation
from models.attention import Attention
from models.lstm import LSTM
from models.tcnn import TCNN
warnings.filterwarnings("ignore", category=RuntimeWarning)
def train(model, ds, lr, device=torch.device('cuda:0'), writer=None):
model = model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loader = DataLoader(ds, batch_size=128, shuffle=True)
print('TRAINING')
for epoch in tqdm(range(50)):
loss_val = []
for data in loader:
x_d_new, x_attr, y_new, qstd = data
x_d_new, x_attr, y_new, qstd = x_d_new.to(device), x_attr.to(device), \
y_new.to(device), qstd.to(device)
y_sub = y_new[:, -1:]
y_hat = model(x_d_new, x_attr)[0]
y_hat_sub = y_hat[:, -1:, :]
loss = loss_fn(y_hat_sub, y_sub)
optimizer.zero_grad()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1)
loss.backward()
optimizer.step()
loss_val.append(loss.item())
loss_val = np.mean(loss_val)
if writer is not None:
writer.add_scalar('training mse', scalar_value=loss_val, global_step=epoch)
return model
def evaluate(model, ds, device=torch.device('cuda:0')):
test_dl = DataLoader(ds, batch_size=128, shuffle=False)
y_true = []
y_pred = []
model = model.eval()
for data in test_dl:
x_d_new, x_attr, y_new, qts = data
x_d_new, x_attr, y_new = x_d_new.to(device), x_attr.to(device), y_new.to(device)
y_sub = y_new[:, -1:]
y_hat = model(x_d_new, x_attr)[0]
y_hat_sub = y_hat[:, -1:, :]
y_pred.append(y_hat_sub.cpu().data.numpy())
y_true.append(y_sub.cpu().data.numpy())
y_true = np.concatenate(y_true, axis=0)
y_pred = np.concatenate(y_pred, axis=0)
y_true, y_pred = y_true.flatten(), y_pred.flatten()
return y_true, y_pred
WINDOW_SIZE = 180
RELU_FLAG = False
SNOWCOVER = None
LR = 1e-4
HID = 128
ENS = 10
device = torch.device('cuda:0')
# model_type = 'LSTM'
model_type = 'TCNN'
# model_type = 'Attention'
KER = 7
LEVELS = 5
CHA = 64
head = 16
num = 3
forward = 32
embedding = 32
path = '/tempest/duan0000/SWE/gridMET/runs_relative_clean/' + model_type.upper() + '_1e-4/'
if not os.path.isdir(path):
os.makedirs(path)
print(model_type)
print(path)
loss_fn = nn.MSELoss()
attributions = ['longitude', 'latitude', 'elevation_prism', 'dah', 'trasp']
forcings = {'pr': 'gridMET/pr_wus_clean.nc', 'rmax': 'gridMET/rmax_wus_clean.nc', 'rmin': 'gridMET/rmin_wus_clean.nc',
'sph': 'gridMET/sph_wus_clean.nc', 'srad': 'gridMET/srad_wus_clean.nc', 'tmmn': 'gridMET/tmmn_wus_clean.nc',
'tmmx': 'gridMET/tmmx_wus_clean.nc', 'vpd': 'gridMET/vpd_wus_clean.nc', 'vs': 'gridMET/vs_wus_clean.nc'}
n_inputs = len(attributions) + len(forcings)
target = ['SWE']
train_ds = []
for station_id in range(581): # 765
ds = gridMETRelativeStation(forcings=forcings, attributions=attributions, target=target, window_size=WINDOW_SIZE,
mode='TRAIN', topo_file='SNOTEL/raw_wus_snotel_topo_clean.nc', station_id=station_id)
if ds.__len__() > 0:
train_ds.append(ds)
print('TOTAL Stations: ', len(train_ds))
train_ds = ConcatDataset(train_ds)
print(train_ds.__len__())
for e in range(9,1,-1): # ens number
print(e, ' Start')
if model_type.lower() == 'lstm':
model = LSTM(hidden_units=HID, input_size=n_inputs, relu_flag=RELU_FLAG)
elif model_type.lower() == 'tcnn':
model = TCNN(kernal_size=KER, num_levels=LEVELS, num_channels=CHA,
input_size=n_inputs)
elif model_type.lower() == 'attention':
model = Attention(num_att_layers=num, dim_feedforward=forward, embedding_size=embedding, n_head=head,
input_size=n_inputs)
model = model.to(device)
model = train(model, train_ds, LR, device=device)
torch.save(model.state_dict(), path + 'model_ens_' + str(e))
result_true = {}
result_pred = {}
for station_id in tqdm(range(581), desc='test_ds'):
ds = gridMETRelativeStation(forcings=forcings, attributions=attributions, target=target,
window_size=WINDOW_SIZE,
mode='TEST', topo_file='SNOTEL/raw_wus_snotel_topo_clean.nc',
station_id=station_id)
if ds.__len__() > 0:
y_true, y_pred = evaluate(model, ds, device=device)
y_true = y_true.reshape(-1, 1)
y_pred = y_pred.reshape(-1, 1)
result_true[station_id] = y_true
result_pred[station_id] = y_pred
with open(path + 'result_true_' + str(e), 'wb') as f:
pickle.dump(result_true, f)
with open(path + 'result_pred_' + str(e), 'wb') as f:
pickle.dump(result_pred, f)