-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConvUNet.py
137 lines (100 loc) · 4.62 KB
/
ConvUNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
from torch import nn
import torch.nn.functional as F
import math
class Swish(nn.Module):
def forward(self, x):
return x * torch.sigmoid(x)
class TimeEmbedding(nn.Module):
def __init__(self, n_channels: int):
super().__init__()
self.n_channels = n_channels
self.lin1 = nn.Linear(self.n_channels // 4, self.n_channels)
self.act = Swish()
self.lin2 = nn.Linear(self.n_channels, self.n_channels)
def forward(self, t: torch.Tensor):
half_dim = self.n_channels // 8
emb = math.log(10_000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=t.device) * -emb)
emb = t[:, None] * emb[None, :]
emb = torch.cat((emb.sin(), emb.cos()), dim=1)
emb = self.act(self.lin1(emb))
emb = self.lin2(emb)
return emb
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, time_channels):
super(ConvBlock, self).__init__()
self.norm1 = nn.GroupNorm(32, in_channels)
self.act1 = Swish()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
#self.bn1 = nn.BatchNorm2d(out_channels)
self.norm2 = nn.GroupNorm(32, out_channels)
self.act2 = Swish()
self.dropout = nn.Dropout(p=0.4)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
#self.bn2 = nn.BatchNorm2d(out_channels)
self.time_emb = nn.Linear(time_channels, out_channels)
def forward(self, x, t):
x = self.conv1(self.act1(self.norm1(x)))
x = x + self.time_emb(t)[:, :, None, None]
x = self.conv2(self.dropout(self.act2(self.norm2(x))))
return x
class EncoderBlock(nn.Module):
def __init__(self, in_channels, out_channels, time_channels):
super(EncoderBlock, self).__init__()
self.conv_block = ConvBlock(in_channels, out_channels, time_channels)
self.conv_block2 = ConvBlock(out_channels, out_channels, time_channels)
#self.pool = nn.MaxPool2d(2)
self.conv = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
def forward(self, x, t):
x = self.conv_block(x,t)
x = self.conv_block2(x,t)
#p = self.pool(x)
p = self.conv(x)
return x, p
class DecoderBlock(nn.Module):
def __init__(self, in_channels, middle_channels, out_channels, time_channels):
super(DecoderBlock, self).__init__()
#self.up = nn.ConvTranspose2d(in_channels, middle_channels, kernel_size=2, stride=2)
self.up = nn.ConvTranspose2d(in_channels, middle_channels, kernel_size=4, stride=2, padding=1)
self.conv_block = ConvBlock(middle_channels + out_channels, out_channels, time_channels)
self.conv_block2 = ConvBlock(out_channels, out_channels, time_channels)
def forward(self, x, skip, t):
x = self.up(x)
x = torch.cat([x, skip], dim=1)
x = self.conv_block(x,t)
x = self.conv_block2(x,t)
return x
class ConvUNet32(nn.Module):
def __init__(self):
super(ConvUNet32, self).__init__()
self.time_emb = TimeEmbedding(64 * 4)
self.start = nn.Conv2d(3, 32, kernel_size=3, padding=1) # 32
self.encoder1 = EncoderBlock(32, 32, 64 * 4) # 32,32
self.encoder2 = EncoderBlock(32, 64, 64 * 4) # 32,64
self.encoder3 = EncoderBlock(64, 128, 64 * 4) # 64,128
self.encoder4 = EncoderBlock(128, 512, 64 * 4) #128,512
self.bridge = ConvBlock(512, 512, 64 * 4) #512,512
#self.bridge2 = ConvBlock(512, 512, 64 * 4) #512,512
self.decoder1 = DecoderBlock(512, 512, 512, 64 * 4) # 512
self.decoder2 = DecoderBlock(512, 128, 128, 64 * 4)
self.decoder3 = DecoderBlock(128, 64, 64, 64 * 4)
self.decoder4 = DecoderBlock(64, 32, 32, 64 * 4)
self.norm = nn.GroupNorm(8, 32)
self.act = Swish()
self.final = nn.Conv2d(32, 3, kernel_size=1)
def forward(self, x, t):
t = self.time_emb(t)
x = self.start(x) # relu is inside the residual block
s1, p1 = self.encoder1(x,t)
s2, p2 = self.encoder2(p1,t)
s3, p3 = self.encoder3(p2,t)
s4, p4 = self.encoder4(p3,t)
b = self.bridge(p4,t)
#b = self.bridge2(b,t)
d1 = self.decoder1(b, s4, t)
d2 = self.decoder2(d1, s3, t)
d3 = self.decoder3(d2, s2, t)
d4 = self.decoder4(d3, s1, t)
output = self.final(self.act(self.norm(d4)))
return output