-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdataset.py
141 lines (126 loc) · 4.95 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
import pickle
import torch
import torchvision.transforms as transforms
from PIL import Image
from IPython.core.debugger import Pdb
import numpy as np
class VQADataset(torch.utils.data.Dataset):
ques_vocab = {}
ans_vocab = {}
def __init__(self, data_dir, qafile, img_dir, phase, img_scale=(256, 256), img_crop=224, raw_images=False):
self.data_dir = data_dir
self.examples = pickle.load(open(os.path.join(data_dir, qafile), 'rb'))
#Pdb().set_trace()
if phase == 'train':
self.load_vocab(data_dir)
self.transforms = transforms.Compose([
transforms.Scale(img_scale),
transforms.CenterCrop(img_crop),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])])
self.img_dir = img_dir
self.phase = phase
self.raw_images = raw_images # if true, images and load images, not embeddings
def load_vocab(self, data_dir):
ques_vocab_file = os.path.join(data_dir, 'ques_stoi.tsv')
for line in open(ques_vocab_file):
parts = line.split('\t')
tok, idx = parts[0], int(parts[1].strip())
VQADataset.ques_vocab[idx] = tok
# NOTE: in version 0.1.1 of torchtext, index 0 is assigned to '<unk>' the first time a unknown token is encountered.
VQADataset.ques_vocab[0] = '<unk>'
ans_vocab_file = os.path.join(data_dir, 'ans_itos.tsv')
for line in open(ans_vocab_file):
parts = line.split('\t')
VQADataset.ans_vocab[parts[0]] = parts[1]
def __len__(self):
return len(self.examples)
def __getitem__(self, idx):
ques_id, ques, _, imgid, ans = self.examples[idx]
if self.raw_images:
img = Image.open('{0}/{1}/COCO_{1}_{2:012d}.jpg'.format(self.data_dir, self.img_dir, imgid))
img = img.convert('RGB')
img = self.transforms(img)
else:
img = torch.load('{}/{}/{}'.format(self.data_dir, self.img_dir, imgid))
return torch.from_numpy(ques), img, imgid, ans, ques_id
class RandomSampler:
def __init__(self,data_source,batch_size):
self.lengths = [ex[2] for ex in data_source.examples]
self.batch_size = batch_size
def randomize(self):
#random.shuffle(
N = len(self.lengths)
self.ind = np.arange(0,len(self.lengths))
np.random.shuffle(self.ind)
self.ind = list(self.ind)
self.ind.sort(key = lambda x: self.lengths[x])
self.block_ids = {}
random_block_ids = list(range(N))
np.random.shuffle(random_block_ids)
#generate a random number between 0 to N - 1
blockid = random_block_ids[0]
self.block_ids[self.ind[0]] = blockid
running_count = 1
for ind_it in range(1,N):
if running_count >= self.batch_size or self.lengths[self.ind[ind_it]] != self.lengths[self.ind[ind_it-1]]:
blockid = random_block_ids[ind_it]
running_count = 0
#
self.block_ids[self.ind[ind_it]] = blockid
running_count += 1
#
# Pdb().set_trace()
self.ind.sort(key = lambda x: self.block_ids[x])
def __iter__(self):
# Pdb().set_trace()
self.randomize()
return iter(self.ind)
def __len__(self):
return len(self.ind)
class VQABatchSampler:
def __init__(self, data_source, batch_size, drop_last=False):
self.lengths = [ex[2] for ex in data_source.examples]
# TODO: Use a better sampling strategy.
# self.sampler = torch.utils.data.sampler.SequentialSampler(data_source)
self.sampler = RandomSampler(data_source,batch_size)
self.batch_size = batch_size
self.drop_last = drop_last
self.data_source = data_source
self.unk_emb = 1000
def __iter__(self):
batch = []
prev_len = -1
this_batch_counter = 0
for idx in self.sampler:
if self.data_source.examples[idx][4] == self.unk_emb:
continue
#
curr_len = self.lengths[idx]
if prev_len > 0 and curr_len != prev_len:
yield batch
batch = []
this_batch_counter = 0
#
batch.append(idx)
prev_len = curr_len
this_batch_counter += 1
if this_batch_counter == self.batch_size:
yield batch
batch = []
prev_len = -1
this_batch_counter = 0
#
if len(batch) > 0 and not self.drop_last:
yield batch
#self.sampler.randomize()
prev_len = -1
this_batch_counter = 0
def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size