-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpreprocess.py
100 lines (84 loc) · 4.47 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from os.path import join
import json
import pickle
from collections import Counter
from torchtext import data
def _create_tsv(data_dir, quesfile, ansfile, outfile, ansid=None):
quesfile = join(data_dir, quesfile)
ques_json = json.load(open(quesfile))
ques = [q['question'] for q in ques_json['questions']]
quesid = [q['question_id'] for q in ques_json['questions']]
imgid = [q['image_id'] for q in ques_json['questions']]
if ansfile is not None:
ansfile = join(data_dir, ansfile)
ans_json = json.load(open(ansfile))
ans = [a['multiple_choice_answer'] for a in ans_json['annotations']]
k = 1000
if ansid is None:
c = Counter(ans)
topk = c.most_common(n=k)
ansid = dict((a[0], i) for i, a in enumerate(topk))
ans_itos_file = join(data_dir, 'ans_itos.tsv')
print('Dumping ans-to-idx map to {}'.format(ans_itos_file))
with open(ans_itos_file, 'w') as fout:
for i, (a, freq) in enumerate(topk):
fout.write('{}\t{}\t{}'.format(i, a, freq) + '\n')
fout.write('{}\t{}\t{}'.format(k, '<unk>', 'rest') + '\n')
ans = [ansid[a] if a in ansid else k for a in ans]
else:
ans = [0 for q in ques]
outfile = join(data_dir, outfile)
with open(outfile, 'w') as out:
for q, qid, i, a in zip(ques, quesid, imgid, ans):
out.write('\t'.join([str(qid), q, str(i), str(a)]) + '\n')
return ansid
def _create_loaders(path, traintsv, valtsv):
def parse_int(tok, *args):
return int(tok)
quesid = data.Field(sequential=False, use_vocab=False, postprocessing=data.Pipeline(parse_int))
ques = data.Field(include_lengths=True)
imgid = data.Field(sequential=False, use_vocab=False, postprocessing=data.Pipeline(parse_int))
ans = data.Field(sequential=False, use_vocab=False, postprocessing=data.Pipeline(parse_int))
train_data, val_data = data.TabularDataset.splits(path=path, train=traintsv, validation=valtsv,
fields=[('quesid', quesid), ('ques', ques), ('imgid', imgid), ('ans', ans)],
format='tsv')
batch_sizes = (1, 1)
train_loader, val_loader = data.BucketIterator.splits((train_data, val_data), batch_sizes=batch_sizes, repeat=False, sort_key=lambda x: len(x.ques))
ques.build_vocab(train_data)
print('vocabulary size: {}'.format(len(ques.vocab.stoi)))
return ques, train_loader, val_loader
def _dump_datasets(loader, outfile, sorted=False):
examples = []
for ex in loader:
examples.append((
ex.quesid.data[0],
ex.ques[0].data.squeeze().cpu().numpy(), # squeeze the batch dim (as batch_size=1)
ex.ques[1][0],
ex.imgid.data[0],
ex.ans.data[0]))
if not sorted:
# required only for train_loader. Other loaders give examples in sorted order.
examples.sort(key=lambda ex: ex[2])
with open(outfile, 'wb') as trainf:
pickle.dump(examples, trainf)
def _dump_vocab(vocab, outfile):
with open(outfile, 'w') as fout:
for tok, idx in vocab:
fout.write('{}\t{}'.format(tok, idx) + '\n')
def preprocess(data_dir, train_ques_file, train_ans_file, val_ques_file, val_ans_file):
print('Preprocessing with data root dir: {}'.format(data_dir))
train_tsv_file, val_tsv_file = 'train.tsv', 'val.tsv'
print('Creating tsv datasets: {}, {}'.format(train_tsv_file, val_tsv_file))
ansid = _create_tsv(data_dir=data_dir, quesfile=train_ques_file, ansfile=train_ans_file, outfile=train_tsv_file)
# create val tsv using ans-to-idx mapping made on train data
_create_tsv(data_dir=data_dir, quesfile=val_ques_file, ansfile=val_ans_file, outfile=val_tsv_file, ansid=ansid)
print('Creating loaders...')
ques, train_loader, val_loader = _create_loaders(data_dir, train_tsv_file, val_tsv_file)
ques_stoi_file = join(data_dir, 'ques_stoi.tsv')
print('Dumping vocabulary to {}'.format(ques_stoi_file))
_dump_vocab(ques.vocab.stoi.items(), ques_stoi_file)
train_data_file, val_data_file = join(data_dir, 'train.pkl'), join(data_dir, 'val.pkl')
print('Dumping train dataset to {}'.format(train_data_file))
_dump_datasets(train_loader, outfile=train_data_file)
print('Dumping val dataset to {}'.format(val_data_file))
_dump_datasets(val_loader, outfile=val_data_file, sorted=True)