-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsan.py
117 lines (100 loc) · 4.46 KB
/
san.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# ref: https://github.com/zcyang/imageqa-san/blob/master/src/san_att_lstm_twolayer_theano.py
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import utils
from IPython.core.debugger import Pdb
class ImageEmbedding(nn.Module):
def __init__(self, output_size=1024, mode='train',
extract_features=False, features_dir=None):
super(ImageEmbedding, self).__init__()
# Pdb().set_trace()
self.cnn = models.vgg16(pretrained=True).features
# self.cnn = nn.Sequential(*list(models.vgg16(pretrained=True).features.children())) #FIXME: Only temporary for the first experiment
for param in self.cnn.parameters():
param.requires_grad = False
self.fc = nn.Sequential(
nn.Linear(512, output_size),
nn.Tanh())
#
self.mode = mode
self.extract_features = extract_features
self.features_dir = features_dir
def forward(self, image, image_ids):
# Pdb().set_trace()
if not self.extract_features:
# N * 224 * 224 -> N * 512 * 14 * 14
image = self.cnn(image)
# N * 512 * 14 * 14 -> N * 512 * 196 -> N * 196 * 512
image = image.view(-1, 512, 196).transpose(1, 2)
if self.features_dir is not None:
utils.save_image_features(image, image_ids, self.features_dir)
# N * 196 * 512 -> N * 196 * 1024
image_embedding = self.fc(image)
return image_embedding
class QuesEmbedding(nn.Module):
def __init__(self, input_size=500, output_size=1024, num_layers=1, batch_first=True):
super(QuesEmbedding, self).__init__()
self.lstm = nn.LSTM(input_size=input_size,
hidden_size=output_size, batch_first=batch_first)
def forward(self, ques):
# seq_len * N * 500 -> (1 * N * 1024, 1 * N * 1024)
_, hx = self.lstm(ques)
# (1 * N * 1024, 1 * N * 1024) -> 1 * N * 1024
h, _ = hx
ques_embedding = h[0]
return ques_embedding
class Attention(nn.Module):
def __init__(self, d=1024, k=512, dropout=True):
super(Attention, self).__init__()
self.ff_image = nn.Linear(d, k)
self.ff_ques = nn.Linear(d, k)
if dropout:
self.dropout = nn.Dropout(p=0.5)
self.ff_attention = nn.Linear(k, 1)
def forward(self, vi, vq):
# N * 196 * 1024 -> N * 196 * 512
hi = self.ff_image(vi)
# N * 1024 -> N * 512 -> N * 1 * 512
hq = self.ff_ques(vq).unsqueeze(dim=1)
# N * 196 * 512
ha = F.tanh(hi + hq)
if getattr(self, 'dropout'):
ha = self.dropout(ha)
# N * 196 * 512 -> N * 196 * 1 -> N * 196
ha = self.ff_attention(ha).squeeze(dim=2)
pi = F.softmax(ha)
# (N * 196 * 1, N * 196 * 1024) -> N * 1024
vi_attended = (pi.unsqueeze(dim=2) * vi).sum(dim=1)
u = vi_attended + vq
return u
class SANModel(nn.Module):
def __init__(self, vocab_size, word_emb_size=500, emb_size=1024, att_ff_size=512, output_size=1000,
num_att_layers=1, num_mlp_layers=1, mode='train', extract_img_features=True, features_dir=None):
super(SANModel, self).__init__()
self.mode = mode
self.features_dir = features_dir
self.image_channel = ImageEmbedding(output_size=emb_size, mode=mode, extract_img_features=extract_img_features,
features_dir=features_dir)
self.word_emb_size = word_emb_size
self.word_embeddings = nn.Embedding(vocab_size, word_emb_size)
self.ques_channel = QuesEmbedding(
word_emb_size, output_size=emb_size, num_layers=1, batch_first=False)
self.san = nn.ModuleList(
[Attention(d=emb_size, k=att_ff_size)] * num_att_layers)
self.mlp = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(emb_size, output_size))
def forward(self, images, questions, image_ids):
image_embeddings = self.image_channel(images, image_ids)
embeds = self.word_embeddings(questions)
# nbatch = embeds.size()[0]
# nwords = embeds.size()[1]
# ques_embeddings = self.ques_channel(embeds.view(nwords, nbatch, self.word_emb_size))
ques_embeddings = self.ques_channel(embeds)
vi = image_embeddings
u = ques_embeddings
for att_layer in self.san:
u = att_layer(vi, u)
output = self.mlp(u)
return output