-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathvqa.py
170 lines (144 loc) · 6.46 KB
/
vqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# feature extaction from pretrained model: https://discuss.pytorch.org/t/how-to-extract-features-of-an-image-from-a-trained-model/119/3
import torch
import torch.nn as nn
import torchvision.models as models
import utils
import torch.nn.functional as F
from IPython.core.debugger import Pdb
class MutanFusion(nn.Module):
def __init__(self, input_dim, out_dim, num_layers):
super(MutanFusion, self).__init__()
self.input_dim = input_dim
self.out_dim = out_dim
self.num_layers = num_layers
hv = []
for i in range(self.num_layers):
do = nn.Dropout(p=0.5)
lin = nn.Linear(input_dim, out_dim)
hv.append(nn.Sequential(do, lin, nn.Tanh()))
#
self.image_transformation_layers = nn.ModuleList(hv)
#
hq = []
for i in range(self.num_layers):
do = nn.Dropout(p=0.5)
lin = nn.Linear(input_dim, out_dim)
hq.append(nn.Sequential(do, lin, nn.Tanh()))
#
self.ques_transformation_layers = nn.ModuleList(hq)
def forward(self, ques_emb, img_emb):
# Pdb().set_trace()
batch_size = img_emb.size()[0]
x_mm = []
for i in range(self.num_layers):
x_hv = img_emb
x_hv = self.image_transformation_layers[i](x_hv)
x_hq = ques_emb
x_hq = self.ques_transformation_layers[i](x_hq)
x_mm.append(torch.mul(x_hq, x_hv))
#
x_mm = torch.stack(x_mm, dim=1)
x_mm = x_mm.sum(1).view(batch_size, self.out_dim)
x_mm = F.tanh(x_mm)
return x_mm
class Normalize(nn.Module):
def __init__(self, p=2):
super(Normalize, self).__init__()
self.p = p
def forward(self, x):
# Pdb().set_trace()
x = x / x.norm(p=self.p, dim=1, keepdim=True)
return x
class ImageEmbedding(nn.Module):
def __init__(self, image_channel_type='I', output_size=1024, mode='train',
extract_features=False, features_dir=None):
super(ImageEmbedding, self).__init__()
self.extractor = models.vgg16(pretrained=True)
# freeze feature extractor (VGGNet) parameters
for param in self.extractor.parameters():
param.requires_grad = False
extactor_fc_layers = list(self.extractor.classifier.children())[:-1]
if image_channel_type.lower() == 'normi':
extactor_fc_layers.append(Normalize(p=2))
self.extractor.classifier = nn.Sequential(*extactor_fc_layers)
self.fflayer = nn.Sequential(
nn.Linear(4096, output_size),
nn.Tanh())
# TODO: Get rid of this hack
self.mode = mode
self.extract_features = extract_features
self.features_dir = features_dir
def forward(self, image, image_ids):
# Pdb().set_trace()
if not self.extract_features:
image = self.extractor(image)
if self.features_dir is not None:
utils.save_image_features(image, image_ids, self.features_dir)
image_embedding = self.fflayer(image)
return image_embedding
class QuesEmbedding(nn.Module):
def __init__(self, input_size=300, hidden_size=512, output_size=1024, num_layers=2, batch_first=True):
super(QuesEmbedding, self).__init__()
# TODO: take as parameter
self.bidirectional = True
if num_layers == 1:
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
batch_first=batch_first, bidirectional=self.bidirectional)
if self.bidirectional:
self.fflayer = nn.Sequential(
nn.Linear(2 * num_layers * hidden_size, output_size),
nn.Tanh())
else:
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=batch_first)
self.fflayer = nn.Sequential(
nn.Linear(2 * num_layers * hidden_size, output_size),
nn.Tanh())
def forward(self, ques):
_, hx = self.lstm(ques)
lstm_embedding = torch.cat([hx[0], hx[1]], dim=2)
ques_embedding = lstm_embedding[0]
if self.lstm.num_layers > 1 or self.bidirectional:
for i in range(1, self.lstm.num_layers):
ques_embedding = torch.cat(
[ques_embedding, lstm_embedding[i]], dim=1)
ques_embedding = self.fflayer(ques_embedding)
return ques_embedding
class VQAModel(nn.Module):
def __init__(self, vocab_size=10000, word_emb_size=300, emb_size=1024, output_size=1000, image_channel_type='I', ques_channel_type='lstm', use_mutan=True, mode='train', extract_img_features=True, features_dir=None):
super(VQAModel, self).__init__()
self.mode = mode
self.word_emb_size = word_emb_size
self.image_channel = ImageEmbedding(image_channel_type, output_size=emb_size, mode=mode,
extract_features=extract_img_features, features_dir=features_dir)
# NOTE the padding_idx below.
self.word_embeddings = nn.Embedding(vocab_size, word_emb_size)
if ques_channel_type.lower() == 'lstm':
self.ques_channel = QuesEmbedding(
input_size=word_emb_size, output_size=emb_size, num_layers=1, batch_first=False)
elif ques_channel_type.lower() == 'deeplstm':
self.ques_channel = QuesEmbedding(
input_size=word_emb_size, output_size=emb_size, num_layers=2, batch_first=False)
else:
msg = 'ques channel type not specified. please choose one of - lstm or deeplstm'
print(msg)
raise Exception(msg)
if use_mutan:
self.mutan = MutanFusion(emb_size, emb_size, 5)
self.mlp = nn.Sequential(nn.Linear(emb_size, output_size))
else:
self.mlp = nn.Sequential(
nn.Linear(emb_size, 1000),
nn.Dropout(p=0.5),
nn.Tanh(),
nn.Linear(1000, output_size))
def forward(self, images, questions, image_ids):
image_embeddings = self.image_channel(images, image_ids)
embeds = self.word_embeddings(questions)
ques_embeddings = self.ques_channel(embeds)
if hasattr(self, 'mutan'):
combined = self.mutan(ques_embeddings, image_embeddings)
else:
combined = image_embeddings * ques_embeddings
output = self.mlp(combined)
return output