-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathtest_mod.py
37 lines (34 loc) · 1.49 KB
/
test_mod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cPickle as pickle
import SceneDesc as desc
from keras.preprocessing import sequence
import nltk
import numpy as np
def process_caption(sd, caption):
tokens = caption.split()
tokens = tokens[1:]
terminate_id = tokens.index('<end>')
tokens = tokens[:terminate_id]
return " ".join([word for word in tokens])
def generate_captions(sd, model, encoded_images, beam_size):
first_word = [sd.word_index['<start>']]
prob_level = 0.0
capt_seq = [[first_word, prob_level]]
max_cap_length = sd.max_length
while len(capt_seq[0][0]) < max_cap_length:
temp_capt_seq = []
for caption_id in capt_seq:
iter_capt = sequence.pad_sequences([caption_id[0]], max_cap_length, padding = 'post')
next_word_prob = model.predict([np.asarray([encoded_images]), np.asarray(iter_capt)])[0]
next_word_ids = np.argsort(next_word_prob)[-beam_size:]
for word_id in next_word_ids:
new_iter_capt, new_iter_prob = caption_id[0][:], caption_id[1]
new_iter_capt.append(word_id)
new_iter_prob+=next_word_prob[word_id]
temp_capt_seq.append([new_iter_capt,new_iter_prob])
capt_seq = temp_capt_seq
capt_seq.sort(key = lambda l:l[1])
capt_seq = capt_seq[-beam_size:]
best_caption = capt_seq[len(capt_seq)-1][0]
best_caption = " ".join([sd.index_word[index] for index in best_caption])
image_desc = process_caption(sd, best_caption)
return image_desc