-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_less_human.py
171 lines (136 loc) · 5.64 KB
/
test_less_human.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import logging
import argparse
import os
import sys
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
from training.networks.envs import make_vec_envs
from training.evaluation import evaluate
from crowd_sim import *
from training.networks.model import Policy
from crowd_nav.policy.dwa import DWA
def main():
# the following parameters will be determined for each test run
parser = argparse.ArgumentParser('Parse configuration file')
# the model directory that we are testing
parser.add_argument('--model_dir', type=str, default='data/ours_RH_HH_hallwayEnv_new')
parser.add_argument('--visualize', default=False, action='store_true')
# if -1, it will run 500 different cases; if >=0, it will run the specified test case repeatedly
parser.add_argument('--test_case', type=int, default=-1)
# dwa: True, others: False
parser.add_argument('--dwa', default=False, action='store_true')
# use cpu if do not have GPU or CUDA version does not match
# No need to change if the computer has a GPU
# otherwise: set to True
parser.add_argument('--cpu', default=False, action='store_true')
# model weight file you want to test
parser.add_argument('--test_model', type=str, default='237800.pt')
# parser.add_argument('--test_model', type=str, default='82000.pt')
# display lidar rays or not
parser.add_argument('--visualize_lidar_rays', default=False, action='store_true')
# save slideshow
parser.add_argument('--save_slides', default=False, action='store_true')
test_args = parser.parse_args()
from importlib import import_module
model_dir_temp = test_args.model_dir
if model_dir_temp.endswith('/'):
model_dir_temp = model_dir_temp[:-1]
# import config class from saved directory
# if not found, import from the default directory
try:
model_dir_string = model_dir_temp.replace('/', '.') + '.configs.config'
model_arguments = import_module(model_dir_string)
Config = getattr(model_arguments, 'Config')
except:
print('Failed to get Config function from ', test_args.model_dir, '/config.py')
from crowd_nav.configs.config import Config
config = Config()
config.sim.human_num = 2
config.sim.human_num_range = 2
if test_args.visualize and test_args.visualize_lidar_rays:
config.lidar.visualize_rays = True
else:
config.lidar.visualize_rays = False
if test_args.save_slides:
# save image slides to disk, remove .pt in path
config.camera.render_checkpoint = test_args.test_model[:-3]
# don't render because it will result in a different testing result
test_args.visualize = False
# only test for 20 episodes
config.env.test_size = 20
# configure logging and device
# print test result in log file
log_file = os.path.join(test_args.model_dir,'test')
if not os.path.exists(log_file):
os.mkdir(log_file)
if test_args.visualize or test_args.save_slides:
log_file = os.path.join(test_args.model_dir, 'test', 'test_visual.log')
else:
log_file = os.path.join(test_args.model_dir, 'test', 'test_'+test_args.test_model+config.env.scenario+'_less_human.log')
file_handler = logging.FileHandler(log_file, mode='w')
stdout_handler = logging.StreamHandler(sys.stdout)
level = logging.INFO
logging.basicConfig(level=level, handlers=[stdout_handler, file_handler],
format='%(asctime)s, %(levelname)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
# logging.info(f"Test parameters: \ngoal weight: {config.dwa.to_goal_cost_gain} \nspeed weight: {config.dwa.speed_cost_gain} \npredict time: {config.dwa.predict_time} \ndynamics weight: {config.dwa.dynamics_weight} \nrobot stuck flag: {config.dwa.robot_stuck_flag_cons} \nstuck action: {config.dwa.stuck_action}\n")
logging.info('robot FOV %f', config.robot.FOV)
logging.info('humans FOV %f', config.humans.FOV)
torch.manual_seed(config.env.seed)
torch.cuda.manual_seed_all(config.env.seed)
if config.training.cuda:
if config.training.cuda_deterministic:
# reproducible but slower
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
# not reproducible but faster
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.set_num_threads(1)
device = torch.device("cuda" if config.training.cuda else "cpu")
if test_args.cpu:
device = torch.device("cpu")
print(device)
logging.info('Create other envs with new settings')
if test_args.visualize:
# for pybullet env
if 'CrowdSim3D' in config.env.env_name:
config.sim.render = True
ax = None
# for the old 2D envs
else:
fig, ax = plt.subplots(figsize=(7, 7))
ax.set_xlim(-6, 6)
ax.set_ylim(-6, 6)
ax.set_xlabel('x(m)', fontsize=16)
ax.set_ylabel('y(m)', fontsize=16)
plt.ion()
plt.show()
else:
ax = None
load_path=os.path.join(test_args.model_dir,'checkpoints', test_args.test_model)
print(load_path)
env_name = config.env.env_name
eval_dir = os.path.join(test_args.model_dir,'eval')
if not os.path.exists(eval_dir):
os.mkdir(eval_dir)
envs = make_vec_envs(env_name, config.env.seed, 1,
config.reward.gamma, eval_dir, device, allow_early_resets=True,
config=config, ax=ax, test_case=test_args.test_case)
# if dwa, skip this part by adding "if"
if test_args.dwa:
actor_critic = DWA(config)
else:
actor_critic = Policy(
envs.observation_space.spaces, # pass the Dict into policy to parse
envs.action_space,
base_kwargs=config,
base=config.robot.policy)
actor_critic.load_state_dict(torch.load(load_path, map_location=device))
actor_critic.base.nenv = 1
# allow the usage of multiple GPUs to increase the number of examples processed simultaneously
nn.DataParallel(actor_critic).to(device)
evaluate(actor_critic, envs, 1, device, config, logging, test_args)
if __name__ == '__main__':
main()