-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathword_retrieval.py
312 lines (268 loc) · 12.8 KB
/
word_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
This file contains code for performing word retrieval experiments
"""
# Standard Library imports
import pdb
import time
import pickle
import logging
import argparse
import numpy as np
from tqdm import tqdm
# Third party imports
import Levenshtein as lev
from sklearn.neighbors import KDTree
from sklearn.metrics import average_precision_score
parser = argparse.ArgumentParser(description='Image features testing')
# Embeddings and text files paths
parser.add_argument('--text_features', default='embeddings/featsSynth.npy', help='numpy file containing text features')
parser.add_argument('--image_features', default='embeddings/featsImg.npy', help='numpy file containing image features')
parser.add_argument('--annotations_path', default='gen_files/ann_demo.txt', help='text file contaning annotations')
parser.add_argument('--ocr_opt_path', default='gen_files/ocr_output_demo.txt', help='text file contaning ocr output')
parser.add_argument('--master_dict', default='embeddings/master_dict_last_101_demo.pkl', help='Path to master dict pickle file')
# Different experiment's flag
parser.add_argument('--experiment_label', default='base', help='label to identify which experiment is going on [ocr_rank (Edit Distance on Text Recogniser Outputs), query_expand, naive_merge]')
parser.add_argument('--qbi', default=0, type=int, help='Count for doing number of time to perform Query by image to cover the entire data')
parser.add_argument('--query_by_image', default=False, help='If True query by image experiment is run, else query by text')
# Different results visulisation flags
parser.add_argument('--visual_text', default=False, help='If True saves a file with necessary information for visualization')
parser.add_argument('--visual_text_name', default=None, help='Name of file for visualization text file')
parser.add_argument('--get_stats', default=False, help='Flag for generating stats file')
parser.add_argument('--stats_name', default=None, help='Name of the stats file')
args = parser.parse_args()
print(args)
# Initialising logger
logging.basicConfig(level=logging.INFO, format='%(asctime)s :: %(levelname)s :: %(message)s', filename='evaluation.log')
logging.info("Starting evaluation...")
logging.info(args)
def get_features(path_to_file):
"""
This method is used to load the numpy arrays from saved files
"""
return np.load(path_to_file, mmap_mode='r')
def get_annotations(path_to_file):
"""
This method is used to load the annotations from a given text file
"""
data = list()
with open(path_to_file, 'r') as file:
for line in file:
data.append(line.split(' '))
return data
def get_unique_words_index_list(path_annotation):
"""
This method is used to get the list of unique words
"""
pickle_file = args.master_dict
annotations = get_annotations(path_annotation)
unique_word_index = list()
with open(pickle_file, 'rb') as file:
data = pickle.load(file)
for key in tqdm(data.keys()):
for annotation in annotations:
if key in annotation:
unique_word_index.append(annotation[-2])
break
return unique_word_index
def get_occurance_list(original_query, label_array):
"""
This method gives a numpy array of number of times original query equals
to the output
original_query: query which is to be compared
label_array: label
"""
output_list = np.zeros(len(label_array),)
for i, label in enumerate(label_array):
if label == original_query:
output_list[i] = 1
return output_list
path_image_features = args.image_features
path_text_features = args.text_features
print('[INFO] Loading embeddings...')
path_annotations = args.annotations_path
ocr_output_path = args.ocr_opt_path
image_features = get_features(path_image_features)
text_features = get_features(path_text_features)
text_features = np.nan_to_num(text_features) # Removing Nan from invalid unigrams
print("[INFO] Creating KDtree...")
start = time.time()
kdt = KDTree(image_features, leaf_size=30, metric='euclidean')
print("[INFO] Time taken in creating KDtree {} seconds!".format(round(time.time() - start, 4)))
if args.query_by_image:
print('[INFO] Generating queries...')
all_queries_file = args.annotations_path
with open(all_queries_file, 'r') as file:
temp_data = file.readlines()
queries_list = [item.split()[-2] for item in temp_data]
else:
print("[INFO] Generating query list...")
queries_list = get_unique_words_index_list(path_annotations)
queries = np.zeros((len(queries_list), text_features.shape[1]))
if not args.query_by_image:
for i, query in enumerate(queries_list):
queries[i, :] = text_features[int(query) - 1, :]
else:
print('[INFO] Performing Query by Image for {} time...'.format(args.qbi + 1))
initial = round(image_features.shape[0]/5) * args.qbi
final = round(image_features.shape[0]/5) * (args.qbi + 1)
queries = image_features[initial : final]
queries_list = queries_list[initial : final]
print('[INFO] Querying KDtree...')
start = time.time()
dist, ind = kdt.query(queries, k=image_features.shape[0], dualtree=True)
print('[INFO] Time taken in querying KDtree {} seconds!'.format(time.time() - start))
running_ap = 0.0
running_ap_inverse = 0.0
count = 0
correct_count = 0
total_count = 0
# Getting the annotations
annotations = get_annotations(path_annotations)
label_dict = dict()
for annotation in annotations:
annotation_number = int(annotation[-2])
if annotation_number not in label_dict.keys():
label_dict[annotation_number] = annotation[1]
if args.visual_text or args.experiment_label=='ocr_rank' or args.experiment_label=='query_expand' or args.experiment_label=='naive_merge' or args.get_stats:
annotations = get_annotations(ocr_output_path)
ocr_dict = dict()
for annotation in annotations:
annotation_number = int(annotation[-2])
if annotation_number not in ocr_dict.keys():
ocr_dict[annotation_number] = annotation[-3]
if args.visual_text or args.get_stats:
annotations = get_annotations(path_annotations)
path_dict = dict()
for annotation in annotations:
annotation_number = int(annotation[-2])
if annotation_number not in path_dict.keys():
path_dict[annotation_number] = annotation[0]
if args.experiment_label == 'query_expand':
start = time.time()
first_indexs_list = list()
first_indexs_dict = dict()
for number, indexs in enumerate(ind):
original_query_first = label_dict[int(queries_list[number])]
present_in_ocr = False
for number_, indexs_ in enumerate(indexs):
if ocr_dict[indexs_ + 1] == original_query_first:
first_indexs_list.append(indexs_ + 1)
present_in_ocr = True
first_indexs_dict[number] = (indexs_ + 1, present_in_ocr, number)
break
if not present_in_ocr:
first_indexs_dict[number] = (indexs_ + 1, present_in_ocr, int(queries_list[number]))
first_indexs_list.append(indexs[0] + 1)
updated_queries = np.zeros((len(first_indexs_list), text_features.shape[1]))
for count_ in sorted(first_indexs_dict.keys()):
value = first_indexs_dict[count_]
if value[1] == True:
updated_queries[count_, :] = image_features[value[0] - 1, :]
else:
updated_queries[count_, :] = text_features[value[2] - 1, :]
del dist
del ind # Using lots of RAM.
print('[INFO] Creating updated dist and ind...')
updated_dist = np.zeros((updated_queries.shape[0], image_features.shape[0]))
updated_ind = np.zeros((updated_queries.shape[0], image_features.shape[0]))
for query_count, selected_query in enumerate(tqdm(updated_queries)):
updated_dist[query_count], updated_ind[query_count] = kdt.query(selected_query.reshape(1, -1), k=image_features.shape[0], dualtree=True)
dist = updated_dist
ind = updated_ind
print('[INFO] Updated dist and ind created...')
print("[INFO] Time taken is ", time.time() - start)
start = time.time()
for i, indexs in enumerate(tqdm(ind, desc='Testing')):
original_query = label_dict[int(queries_list[i])]
label_array = list()
if args.experiment_label == 'ocr_rank' or args.experiment_label == 'naive_merge':
ocr_edit_distance_dict = dict()
for index in indexs:
index += 1
label = label_dict[index]
label_array.append(label)
if args.experiment_label == 'ocr_rank' or args.experiment_label=='naive_merge':
ocr_output = ocr_dict[index]
lev_dist = lev.distance(original_query, ocr_output)
if lev_dist not in ocr_edit_distance_dict.keys():
ocr_edit_distance_dict[lev_dist] = [(ocr_output, index, label_dict[index], original_query)]
else:
ocr_edit_distance_dict[lev_dist].append((ocr_output, index, label_dict[index], original_query))
if args.experiment_label == 'naive_merge':
updated_label_array = list()
updated_dist = list()
used_indexs = list()
zero_ed_list = list()
if 0 in ocr_edit_distance_dict.keys():
zero_ed_list = ocr_edit_distance_dict[0]
for elements in zero_ed_list:
updated_label_array.append(elements[2])
position = np.where(indexs == elements[1] - 1)[0][0]
updated_dist.append(0)
used_indexs.append(elements[1])
for index in indexs:
index += 1
if index in used_indexs:
pass
else:
position = np.where(indexs == index - 1)[0][0]
updated_dist.append(dist[i][position])
updated_label_array.append(label_dict[index])
dist[i] = updated_dist
label_array = updated_label_array
if args.experiment_label == 'ocr_rank':
min_edit = min(ocr_edit_distance_dict.keys())
max_edit = max(ocr_edit_distance_dict.keys())
y_true_rank = list()
y_label_rank = list()
for edit_dist in sorted(ocr_edit_distance_dict.keys()):
for entry in ocr_edit_distance_dict[edit_dist]:
total_count += 1
y_label_rank.append(max_edit - edit_dist)
if entry[-2] == entry[0]:
correct_count += 1
if entry[-2] == entry[-1]:
y_true_rank.append(1)
else:
y_true_rank.append(0)
y_label_rank_final = [x / max_edit for x in y_label_rank] # normalizing the y_label_rank
running_ap_inverse += average_precision_score(y_true_rank, y_label_rank_final)
y_label = max(dist[i]) - dist[i]
y_true = get_occurance_list(original_query, label_array)
score = average_precision_score(y_true, y_label)
if args.visual_text:
file_name = 'output/' + args.visual_text_name + '.txt'
with open(file_name, 'a') as visual_file:
visual_file.write('Query: {} {} \n'.format(path_dict[int(queries_list[i])].split('/')[-1], original_query))
visual_file.write('mAP: {} \n'.format(score))
rank_count = 0
for dist_count, index_temp in enumerate(indexs):
index_temp += 1
truth = y_true[dist_count]
rank_count += 1
visual_file.write('Rank: {} {} {} {} {} {} \n'.format(path_dict[index_temp].split('/')[-1], label_dict[index_temp], ocr_dict[index_temp], dist[i][dist_count], rank_count, truth))
if rank_count == 100:
break
if args.get_stats:
file_name = 'output/' + args.stats_name + '.txt'
with open(file_name, 'a') as stats_file:
to_write = "Query {} mAP {} \n".format(original_query, round(score, 4))
stats_file.write(to_write)
rank_count = 0
for dist_count, index_temp in enumerate(indexs):
index_temp += 1
truth = y_true[dist_count]
rank_count += 1
stats_file.write('Rank: {} {} {} {} {} {} \n'.format(path_dict[index_temp].split('/')[-1], label_dict[index_temp], ocr_dict[index_temp], dist[i][dist_count], rank_count, truth))
if rank_count == 100:
break
running_ap += score
count += 1
mAP = running_ap/count
if args.experiment_label == 'ocr_rank':
print('[INFO] Mean average precision for experiment label {} is {}. And for the original experiment is {}'.format(args.experiment_label, running_ap_inverse/count, mAP))
logging.info('[INFO] Mean average precision for experiment label {} is {}. And for the original experiment is {}'.format(args.experiment_label, running_ap_inverse/count, mAP))
else:
print("[INFO] Mean average precision was: ", mAP)
logging.info("[INFO] Mean average precision was: {}".format(mAP))
print('[INFO] Time taken in experiment was ', time.time() - start)