Skip to content

Latest commit

 

History

History
143 lines (106 loc) · 5.52 KB

README.md

File metadata and controls

143 lines (106 loc) · 5.52 KB

CRE-LLM

CRE-LLM: A Domain-Specific Chinese Relation Extraction Framework with Fine-tuned Large Language Model

Overview

Requirement

  • Python 3.8+
  • PyTorch 1.13.1+
  • 🤗Transformers 4.37.2+
  • Datasets 2.14.3+
  • Accelerate 0.27.2+
  • PEFT 0.10.0+
  • TRL 0.8.1+
  • gradio>=4.0.0

And powerful GPUs!

Getting Started

Dependence Installation

git clone https://github.com/SkyuForever/CRE-LLM.git
conda create -n CRE-LLM python=3.10
conda activate CRE-LLM
cd CRE-LLM
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirements.txt

Data Preparation (optional)

Experiments are conducted on 2 CRE benchmarks FinRE, SanWen.

FinRE

FinRE dataset has been downloaded under data/FinRE.

CRE-LLM/
└── data/
    ├── FinRE                  
        ├── train.txt
        ├── valid.txt      
        ├── test.txt
        └── relation2id.txt                                                           

SanWen

SanWen dataset has been downloaded under data/SanWen.

CRE-LLM/
└── data/
    ├── SanWen                 
        ├── train.txt                   
        ├── valid.txt      
        ├── test.txt
        └── relation2id.txt                       

Data Processing (optional)

Prepare data for training and evaluation

  • FinRE:

Run python data_process.py and the augmented dataset files are saved as data/FinRE/test[train].json.

  • SanWen

Run python data_process.py and the augmented dataset files are saved as data/SanWen/test[train].json.

Note

Please update data/dataset_info.json to use your custom dataset. About the format of this file, please refer to data/README.md.

You can also get the CRE-LLM processed data from our project directly.

Please remember to set it in data/.

CRE-LLM/
└── data/
    ├── FinRE/                 
        ├── train.json    
        ├── valid.json
        └── test.json  
    └── SanWen/                 
        ├── train.json    
        ├── valid.json
        └── test.json                                               

Fine-tuning and Evaluation

The following is an example of LLM fine-tuning and evaulation on FinRe and SanWen. We provide a variety of LLMs for our framework, as follows:

Model Model size Default module Template
LLaMA-2 7B/13B/70B q_proj,v_proj llama2
Baichuan2 7B/13B W_pack baichuan2
ChatGLM2 6B query_key_value chatglm2

Note

For the "base" models, the --template argument can be chosen from default, alpaca, vicuna etc. But make sure to use the corresponding template for the "instruct/chat" models.

Remember to use the SAME template in training and inference.

For more information of fine-tuning, please refer to LLaMA-Efficient-Tuning.

(1) Supervised Fine-Tuning LLM for triple Generation

  • FinRE:

Train LLMs for Triple Generation:

CUDA_VISIBLE_DEVICES=0 nohup python src/train_bash.py --model_name_or_path path_to_model --stage sft --do_train --dataset FinRE_train --template default --finetuning_type lora --lora_target q_proj,v_proj --output_dir path_to_sft_checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-5 --num_train_epochs 5 --plot_loss --fp16 >> FinRE_train.txt 2>&1 &

Test LLMs for Triple Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u src/train_bash.py --model_name_or_path path_to_model --stage sft --dataset FinRE_test --do_predict --template default --finetuning_type lora --checkpoint_dir path_to_checkpoint --output_dir path_to_predict_result --per_device_eval_batch_size 8 --max_samples 100 --predict_with_generate >> FinRE_test.txt 2>&1 &
  • SanWen:

Train LLMs for Triple Generation:

CUDA_VISIBLE_DEVICES=0 nohup python src/train_bash.py --model_name_or_path path_to_model --stage sft --do_train --dataset SanWen_train --template default --finetuning_type lora --lora_target q_proj,v_proj --output_dir path_to_sft_checkpoint --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 1000 --learning_rate 5e-4 --num_train_epochs 10 --plot_loss --fp16 >> SanWen_train.txt 2>&1 &

Test LLMs for Triple Generation:

CUDA_VISIBLE_DEVICES=3 nohup python -u src/train_bash.py --model_name_or_path path_to_model --stage sft --dataset SanWen_test --do_predict --template default --finetuning_type lora --checkpoint_dir path_to_checkpoint --output_dir path_to_predict_result --per_device_eval_batch_size 8 --max_samples 100 --predict_with_generate >> SanWen_test.txt 2>&1 &

(2) Evaulate CRE result

Run python eval.py to get the Accuracy, Recall and F1 score.