-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbfm.cpp
437 lines (386 loc) · 16.3 KB
/
bfm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// http://rodolphe-vaillant.fr/?e=29
#include "bfm.h"
#include <iomanip>
#include <chrono>
#include <xmmintrin.h>
// http://web.archive.org/web/20150531202539/http://www.codeproject.com/Articles/4522/Introduction-to-SSE-Programming
// https://software.intel.com/sites/landingpage/IntrinsicsGuide/#techs=SSE2
#include <omp.h>
// --------------------------------------
//
// --------------------------------------
inline void checkCudaStatus(cudaError_t status)
{
if (status != cudaSuccess)
{
printf("cuda API failed with status %d: %s\n", status, cudaGetErrorString(status));
throw std::logic_error("cuda API failed");
}
}
// --------------------------------------
//
// --------------------------------------
inline void checkCublasStatus(cublasStatus_t status)
{
if (status != CUBLAS_STATUS_SUCCESS)
{
printf("cuBLAS API failed with status %d\n", status);
throw std::logic_error("cuBLAS API failed");
}
}
// --------------------------------------
//
// --------------------------------------
void print3dArray(cnpy::NpyArray& arr)
{
std::cout << std::fixed << std::setprecision(4) << std::setfill(' ');
for (size_t i = 0; i < arr.shape[0]; i++)
{
for (size_t j = 0; j < arr.shape[1]; j++)
{
for (size_t k = 0; k < arr.shape[2]; k++)
{
std::cout << std::setw(8) << arr.data<float>()[i * arr.shape[1] * arr.shape[2] + j * arr.shape[2] + k] << " ";
}
std::cout << std::endl;
}
std::cout << " -------- " << std::endl;
}
std::cout << " ================= " << std::endl;
}
// --------------------------------------
//
// --------------------------------------
void print2dArray(cnpy::NpyArray& arr)
{
std::cout << std::fixed << std::setprecision(4) << std::setfill(' ');
for (size_t i = 0; i < arr.shape[0]; i++)
{
for (size_t j = 0; j < arr.shape[1]; j++)
{
std::cout << std::setw(8) << arr.data<float>()[i * arr.shape[1] + j] << " ";
}
std::cout << std::endl;
}
std::cout << " ================= " << std::endl;
}
//--------------------------------------------------------------------------
// Clone cnpy::NpyArray
//--------------------------------------------------------------------------
void cloneArray(cnpy::NpyArray& src, cnpy::NpyArray& dst)
{
dst = cnpy::NpyArray(src.shape, src.word_size, src.fortran_order);
memcpy(dst.data<unsigned char>(), src.data<unsigned char>(), src.num_bytes());
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void bfm::initCublas(void)
{
checkCublasStatus(cublasLtCreate(<Handle));
//workspaceSize = 4 * (vertex_num * shape_basis_dim);
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&AdevShape), vertex_num * shape_basis_dim * sizeof(float)));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&BdevShape), shape_basis_dim * sizeof(float)));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&CdevShape), vertex_num * sizeof(float)));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&biasDevShape), vertex_num * sizeof(float)));
checkCudaStatus(cudaMalloc(&workspace, workspaceSize));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&AdevTex), vertex_num * tex_basis_dim * sizeof(float)));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&BdevTex), tex_basis_dim * sizeof(float)));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&CdevTex), vertex_num * sizeof(float)));
checkCudaStatus(cudaMalloc(reinterpret_cast<void**>(&biasDevTex), vertex_num * sizeof(float)));
checkCudaStatus(cudaMalloc(&workspace, workspaceSize));
checkCudaStatus(cudaStreamCreate(&stream));
}
void bfm::deinitCublas()
{
checkCublasStatus(cublasLtDestroy(ltHandle));
checkCudaStatus(cudaFree(AdevShape));
checkCudaStatus(cudaFree(BdevShape));
checkCudaStatus(cudaFree(CdevShape));
checkCudaStatus(cudaFree(biasDevShape));
checkCudaStatus(cudaFree(AdevTex));
checkCudaStatus(cudaFree(BdevTex));
checkCudaStatus(cudaFree(CdevTex));
checkCudaStatus(cudaFree(biasDevTex));
checkCudaStatus(cudaFree(workspace));
checkCudaStatus(cudaStreamDestroy(stream));
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void bfm::copyDataToDevice()
{
checkCudaStatus(cudaMemcpyAsync(AdevShape, AhostShape.data(), AhostShape.size() * sizeof(AhostShape[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(BdevShape, BhostShape.data(), BhostShape.size() * sizeof(BhostShape[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(CdevShape, ChostShape.data(), ChostShape.size() * sizeof(ChostShape[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(biasDevShape, biasHostShape.data(), biasHostShape.size() * sizeof(biasHostShape[0]), cudaMemcpyHostToDevice));
checkCudaStatus(cudaMemcpyAsync(AdevTex, AhostTex.data(), AhostTex.size() * sizeof(AhostTex[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(BdevTex, BhostTex.data(), BhostTex.size() * sizeof(BhostTex[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(CdevTex, ChostTex.data(), ChostTex.size() * sizeof(ChostTex[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(biasDevTex, biasHostTex.data(), biasHostTex.size() * sizeof(biasHostTex[0]), cudaMemcpyHostToDevice));
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void bfm::copyDataFromDevice()
{
checkCudaStatus(cudaMemcpyAsync(biasHostShape.data(), CdevShape, biasHostShape.size() * sizeof(biasHostShape[0]), cudaMemcpyDeviceToHost, stream));
checkCudaStatus(cudaMemcpyAsync(biasHostTex.data(), CdevTex, biasHostTex.size() * sizeof(biasHostTex[0]), cudaMemcpyDeviceToHost, stream));
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void bfm::streamSynchronize()
{
checkCudaStatus(cudaStreamSynchronize(stream));
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void LtSgemm(cublasLtHandle_t ltHandle,
cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const float* alpha, /* host pointer */
const float* A,
int lda,
const float* B,
int ldb,
const float* beta, /* host pointer */
float* C,
int ldc,
void* workspace,
size_t workspaceSize)
{
cublasLtMatmulDesc_t operationDesc = NULL;
cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL;
cublasLtMatmulPreference_t preference = NULL;
int returnedResults = 0;
cublasLtMatmulHeuristicResult_t heuristicResult = {};
// create operation desciriptor; see cublasLtMatmulDescAttributes_t for details about defaults; here we just need to
// set the transforms for A and B
checkCublasStatus(cublasLtMatmulDescCreate(&operationDesc, CUDA_R_32F));
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &transa, sizeof(transa)));
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSB, &transb, sizeof(transa)));
// create matrix descriptors, we are good with the details here so no need to set any extra attributes
checkCublasStatus(cublasLtMatrixLayoutCreate(&Adesc, CUDA_R_32F, transa == CUBLAS_OP_N ? m : k, transa == CUBLAS_OP_N ? k : m, lda));
checkCublasStatus(cublasLtMatrixLayoutCreate(&Bdesc, CUDA_R_32F, transb == CUBLAS_OP_N ? k : n, transb == CUBLAS_OP_N ? n : k, ldb));
checkCublasStatus(cublasLtMatrixLayoutCreate(&Cdesc, CUDA_R_32F, m, n, ldc));
// create preference handle; here we could use extra attributes to disable tensor ops or to make sure algo selected
// will work with badly aligned A, B, C; here for simplicity we just assume A,B,C are always well aligned (e.g.
// directly come from cudaMalloc)
checkCublasStatus(cublasLtMatmulPreferenceCreate(&preference));
checkCublasStatus(cublasLtMatmulPreferenceSetAttribute(preference, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &workspaceSize, sizeof(workspaceSize)));
// we just need the best available heuristic to try and run matmul. There is no guarantee this will work, e.g. if A
// is badly aligned, you can request more (e.g. 32) algos and try to run them one by one until something works
checkCublasStatus(cublasLtMatmulAlgoGetHeuristic(ltHandle, operationDesc, Adesc, Bdesc, Cdesc, Cdesc, preference, 1, &heuristicResult, &returnedResults));
if (returnedResults == 0)
{
checkCublasStatus(CUBLAS_STATUS_NOT_SUPPORTED);
}
checkCublasStatus(cublasLtMatmul(ltHandle,
operationDesc,
alpha,
A,
Adesc,
B,
Bdesc,
beta,
C,
Cdesc,
C,
Cdesc,
&heuristicResult.algo,
workspace,
workspaceSize,
0));
// descriptors are no longer needed as all GPU work was already enqueued
if (preference) checkCublasStatus(cublasLtMatmulPreferenceDestroy(preference));
if (Cdesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Cdesc));
if (Bdesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Bdesc));
if (Adesc) checkCublasStatus(cublasLtMatrixLayoutDestroy(Adesc));
if (operationDesc) checkCublasStatus(cublasLtMatmulDescDestroy(operationDesc));
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void bfm::loadModel(std::string filename)
{
std::cout << "---------------------------" << std::endl;
std::cout << "Loding SMPL model file : " << filename << std::endl;
std::cout << "---------------------------" << std::endl;
npz_map = cnpy::npz_load(filename);
// face indices
tl = npz_map["tl"]; // n_faces*3
face_index_num = tl.shape[0];
for (int i = 0; i < face_index_num*3; ++i)
{
tl.data<unsigned int>()[i]--; // rebase indices to 0
}
COUT_VAR(face_index_num);
std::cout << "faceIndices shape ";
printDims(tl);
std::cout << std::endl;
// mean mesh vertices
shapeMU = npz_map["shapeMU"]; // n_vert*3
vertex_num = shapeMU.shape[0]; // n_vert*3
COUT_VAR(vertex_num);
std::cout << "shapeMU shape:";
printDims(shapeMU);
std::cout << std::endl;
// shape basis
shapePC = npz_map["shapePC"]; // n_vert*3,shape_basis_dim
shape_basis_dim = shapePC.shape[1];
COUT_VAR(shape_basis_dim);
std::cout << "shapePC shape:";
printDims(shapePC);
std::cout << std::endl;
// shape eigenvalues
shapeEV = npz_map["shapeEV"]; // n_vert*3,shape_basis_dim
std::cout << "shapeEV shape:";
printDims(shapeEV);
std::cout << std::endl;
// mean tex
texMU = npz_map["texMU"]; // n_vert*3
std::cout << "mean tex shape:";
printDims(texMU);
std::cout << std::endl;
// tex principal comps
texPC = npz_map["texPC"]; // n_vert*3,tex_basis_dim
tex_basis_dim = texPC.shape[1];
COUT_VAR(tex_basis_dim);
std::cout << "texPC shape:";
printDims(texPC);
std::cout << std::endl;
// tex eigenvalues
texEV = npz_map["texEV"]; // n_vert*3,shape_basis_dim
std::cout << "texEV shape:";
printDims(texEV);
std::cout << std::endl;
// tex basis
texPC = npz_map["texPC"];// n_vert*3,tex_basis_dim
tex_basis_dim = texPC.shape[1];
COUT_VAR(tex_basis_dim);
std::cout << "texPC shape:";
printDims(texPC);
std::cout << std::endl;
vetexNormals = cnpy::NpyArray(shapeMU.shape, shapeMU.word_size,shapeMU.fortran_order);
normalsComputer = std::make_shared<NormalsComputer>(tl.as_vec<unsigned int>());
std::cout << "---------------------------" << std::endl;
std::cout << " Successfully loaded " << std::endl;
std::cout << "---------------------------" << std::endl;
//
std::vector<float> shape(shape_basis_dim, 0);
std::vector<float> tex(tex_basis_dim, 0);
cloneArray(texMU, Tex);
cloneArray(shapeMU, Shape);
AhostShape.resize(vertex_num * shape_basis_dim);
BhostShape.resize(shape_basis_dim);
ChostShape.resize(vertex_num);
biasHostShape.resize(vertex_num);
memcpy(AhostShape.data(), shapePC.data<float>(), vertex_num * shape_basis_dim * sizeof(float));
memcpy(BhostShape.data(), shape.data(), shape_basis_dim * sizeof(float));
memcpy(ChostShape.data(), shapeMU.data<float>(), vertex_num * sizeof(float));
memcpy(biasHostShape.data(), shapeMU.data<float>(), vertex_num * sizeof(float));
AhostTex.resize(vertex_num * tex_basis_dim);
BhostTex.resize(tex_basis_dim);
ChostTex.resize(vertex_num);
biasHostTex.resize(vertex_num);
memcpy(AhostTex.data(), texPC.data<float>(), vertex_num * tex_basis_dim * sizeof(float));
memcpy(BhostTex.data(), tex.data(), tex_basis_dim * sizeof(float));
memcpy(ChostTex.data(), texMU.data<float>(), vertex_num * sizeof(float));
memcpy(biasHostTex.data(), texMU.data<float>(), vertex_num * sizeof(float));
initCublas();
copyDataToDevice();
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
void bfm::updateMesh(std::vector<float>& shape, std::vector<float>& tex)
{
std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
cloneArray(texMU, Tex);
cloneArray(shapeMU, Shape);
std::vector<float> scaled_shape(shape_basis_dim,0);
for (int i = 0; i < shape.size(); ++i)
{
scaled_shape[i] = shapeEV.data<float>()[i] * shape[i];
}
memcpy(BhostShape.data(), scaled_shape.data(), shape_basis_dim * sizeof(float));
checkCudaStatus(cudaMemcpyAsync(BdevShape, BhostShape.data(), BhostShape.size() * sizeof(BhostShape[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(CdevShape, ChostShape.data(), ChostShape.size() * sizeof(ChostShape[0]), cudaMemcpyHostToDevice, stream));
float alpha = 1.0f;
float beta = 1.0f;
int m = 1;
int n = vertex_num;
int k = shape_basis_dim;
int lda = 1;
int ldb = shape_basis_dim;
int ldc = 1;
LtSgemm(ltHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,
n,
k,
&alpha,
BdevShape,
lda,
AdevShape,
ldb,
&beta,
CdevShape,
ldc,
workspace,
workspaceSize);
std::vector<float> scaled_tex(tex_basis_dim, 0);
for (int i = 0; i < tex.size(); ++i)
{
scaled_tex[i] = texEV.data<float>()[i] * tex[i];
}
memcpy(BhostTex.data(), scaled_tex.data(), tex_basis_dim * sizeof(float));
checkCudaStatus(cudaMemcpyAsync(BdevTex, BhostTex.data(), BhostTex.size() * sizeof(BhostTex[0]), cudaMemcpyHostToDevice, stream));
checkCudaStatus(cudaMemcpyAsync(CdevTex, ChostTex.data(), ChostTex.size() * sizeof(ChostTex[0]), cudaMemcpyHostToDevice, stream));
m = 1;
n = vertex_num;
k = tex_basis_dim;
lda = 1;
ldb = tex_basis_dim;
ldc = 1;
LtSgemm(ltHandle,
CUBLAS_OP_N,
CUBLAS_OP_N,
m,
n,
k,
&alpha,
BdevTex,
lda,
AdevTex,
ldb,
&beta,
CdevTex,
ldc,
workspace,
workspaceSize);
copyDataFromDevice();
memcpy(Shape.data<float>(), biasHostShape.data(), vertex_num * sizeof(float));
memcpy(Tex.data<float>(), biasHostTex.data(), vertex_num * sizeof(float));
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
std::cout << "Elapseed = " << std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count() << "[µs]" << std::endl;
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
bfm::bfm()
{
}
bfm::~bfm()
{
deinitCublas();
}
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------