-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
62 lines (50 loc) · 2.31 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import gradio as gr
import os
from qdrant_client import QdrantClient
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("clip-ViT-B-32")
qdrant_client = QdrantClient(
url = os.environ['QDRANT_URL'],
port= 443,
api_key = os.environ['QDRANT_API_KEY']
)
def search_images(modality, count, input_text, input_image):
query = str(input_text) if modality=='Text' else input_image
results = qdrant_client.search(
collection_name = "images",
query_vector = model.encode(query).tolist(),
with_payload = True,
limit = count
)
return [gr.update(value="## Results\nThe image data is limited, don't expect to find everything!")]+[gr.Image(value=result.payload['url'], visible=True) for result in results]+[gr.Image(visible=False)]*(100-count)
def clear():
return [gr.update(value="")]+[gr.Image(visible=False)]*100
def input_interface(choice):
if choice == "Text":
return [gr.update(visible=True), gr.update(visible=False)]
else:
return [gr.update(visible=False), gr.update(visible=True)]
with gr.Blocks() as interface:
gr.Markdown("# Multi-Modal Image Search Engine\nSemantically search over 15k images using text or image inputs!")
# Input Interface
with gr.Column(variant='compact'):
input_type = gr.Radio(choices=["Text", "Image"], type="value", label="Modality", value="Text")
with gr.Column() as text_area:
text_input = gr.Textbox(label="Text", lines=1, placeholder="Try 'Golden Retriever'")
with gr.Column(visible=False) as image_uploader:
image_input = gr.Image(type="pil")
input_type.change(input_interface, input_type, [text_area, image_uploader])
# Search Controls
with gr.Column(variant="panel"):
count = gr.Slider(minimum=1, maximum=40, step=1, value=8, label="No. of Results")
images_btn = gr.Button(value="Search Images", variant="primary")
# Output Interface
images = []
images.append(gr.Markdown())
with gr.Column() as output_images:
for i in range(10):
with gr.Row():
for j in range(4):
images.append(gr.Image(visible=False))
images_btn.click(clear, outputs=images).then(search_images, inputs=[input_type, count, text_input, image_input], outputs=images)
interface.launch()