-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpredict_linearsvc_one_var_simple.py
97 lines (63 loc) · 2.53 KB
/
predict_linearsvc_one_var_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import pandas as pd
import numpy as np
from sklearn import preprocessing
import sys
sys.path.append(os.path.join("lib"))
from AllStateDataLoader import AllStateDataLoader
def get_X_columns(data):
return [x for x in data.columns if x not in ["real_%s" % letter for letter in ['A','B','C','D','E','F','G']]]
def get_X_with_scaler(data):
tmp = data.copy()
for variable in ["real_%s" % x for x in ['A','B','C','D','E','F','G']]:
del tmp[variable]
scaler = preprocessing.StandardScaler()
scaler.fit(tmp)
return (scaler, scaler.transform(tmp))
def get_X_without_scaler(data):
tmp = data.copy()
for variable in ["real_%s" % x for x in ['A','B','C','D','E','F','G']]:
del tmp[variable]
# scaler = preprocessing.StandardScaler()
# scaler.fit(tmp)
return np.array(tmp)
def get_y_value(letter, value, data):
tmp = data.copy()
return np.array(np.where(tmp["real_%s" % letter] == value, 1, 0))
def get_y(letter, data):
tmp = data.copy()
return np.array(tmp["real_%s" % letter])
from sklearn import svm
from sklearn.externals import joblib
from sklearn import grid_search
l = AllStateDataLoader()
print("Extraction data_2...")
data_2 = l.get_data_2_train()
print("Extraction data_3...")
data_3 = l.get_data_3_train()
print("Extraction data_4...")
data_4 = l.get_data_4_train()
print("Extraction data_all...")
data_all = l.get_data_all_train()
def fit_and_save_log(parameters, dataset, letter, filename,verbose=2):
log = svm.LinearSVC(class_weight="auto")
X = get_X_without_scaler(dataset)
y = get_y(letter, dataset)
model = grid_search.GridSearchCV(log, parameters, verbose=verbose)
model.fit(X,y)
print("sauvegarde model %s dans %s" % (letter, filename))
joblib.dump(model, filename)
return model
# fitting models
parameters = {'C' : [0.1, 0.5, 1.0], 'loss' : ['l2'], 'penalty' : ['l1','l2'], 'dual' : [False]}
model_list = {}
dataset = {'2' : data_2, '3' : data_3, '4' : data_4, 'all' : data_all}
for letter in ['A','B','C','D','E','F','G']:
model_list[letter] = {}
for datasetname in sorted(dataset.keys()):
model_filename = os.path.join("model_linearsvc", "model_linearsvc_data_%s_%s_not_centered.pkl" % (datasetname, letter))
if not os.path.exists(model_filename):
print("Calcul model %s sur dataset %s" % (letter, datasetname))
data = dataset[datasetname]
model = fit_and_save_log(parameters, data, letter, model_filename)
# model_list[letter][datasetname] = model